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Exploration of blood−derived
coding and non-coding RNA
diagnostic immunological
panels for COVID-19 through a
co-expressed-based machine
learning procedure

Mohadeseh Zarei Ghobadi1*, Rahman Emamzadeh1*,
Majid Teymoori-Rad2 and Elaheh Afsaneh3

1Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and
Technology, University of Isfahan, Isfahan, Iran, 2Department of Virology, School of Public Health,
Tehran University of Medical Sciences, Tehran, Iran, 3Department of Physics, University of Isfahan,
Hezar Jarib, Isfahan, Iran
Severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) is the

causative virus of the pandemic coronavirus disease 2019 (COVID-19).

Evaluating the immunological factors and other implicated processes

underlying the progression of COVID-19 is essential for the recognition and

then the design of efficacious therapies. Therefore, we analyzed RNAseq data

obtained from PBMCs of the COVID-19 patients to explore coding and non-

coding RNA diagnostic immunological panels. For this purpose, we integrated

multiple RNAseq data and analyzed them overall as well as by considering the

state of disease including severe and non-severe conditions. Afterward, we

utilized a co-expressed-based machine learning procedure comprising

weighted-gene co-expression analysis and differential expression gene as

filter phase and recursive feature elimination-support vector machine as

wrapper phase. This procedure led to the identification of two modules

containing 5 and 84 genes which are mostly involved in cell dysregulation

and innate immune suppression, respectively. Moreover, the role of vitamin D

in regulating some classifiers was highlighted. Further analysis disclosed the

role of discriminant miRNAs including miR-197-3p, miR-150-5p, miR-340-5p,

miR-122-5p, miR-1307-3p, miR-34a-5p, miR-98-5p and their target genes

comprising GAN, VWC2, TNFRSF6B, and CHST3 in the metabolic pathways.

These classifiers differentiate the final fate of infection toward severe or non-

severe COVID-19. The identified classifier genes and miRNAs may help in the

proper design of therapeutic procedures considering their involvement in the

immune and metabolic pathways.

KEYWORDS
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Introduction

Coronavirus disease 2019 (COVID-19), a respiratory

illness caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), has lately become an epidemic

(1). SARS-CoV-2 infection activates innate and adaptive

immune responses. The infected patients show different

symptoms from mild to severe, in which host inflammatory

responses and virus-specific factors have critical roles (2, 3).

Lymphocytopenia is a prevalent condition along with the

reduced percentage of eosinophils, monocytes, and basophils

as well as a decrease in the numbers of B cells, cytotoxic T

lymphocytes known as CD8+ T cells, T helper cells known as

CD4+ T cells, and natural killer (NK) cells (1, 4, 5).

The association between the severity of disease with the

unusual amount of some pro- or antiinflammatory chemokines,

cytokines, and other mediators has been reported (4. 6–8). The

higher levels of granulocyte colony-stimulating factor (G-CSF),

Interleukin-2 (IL-2), Interleukin-7 (IL-7), Interleukin-10 (IL-

10), Monocyte Chemoattractant Protein-1 (MCP-1)/C-C Motif

Chemokine Ligand 2 (CCL2), C-X-C motif chemokine ligand

10 (CXCL10)/interferon-gamma-induced protein-10 (IP-10),

Tumor necrosis factor-a (TNF-a), and Macrophage

Inflammatory Proteins -1 a (MIP-1a)/C-C Motif Chemokine

Ligand 3 (CCL3) were detected in the patients who needed ICU

admission. Moreover, an increased Interleukin-6 (IL-6) level was

found in the dead patients (7, 9–11). The comprehensive

investigation of the COVID-19 pathogenesis may lead to the

recognition of prognostic biomarkers and the design of

targeted therapies.

Differential expression and co-expression analyses are two

main approaches that are widely used to identify the significant

genes involved in a specific condition such as cancers or

infectious diseases (12–16).

However, the genes obtained from analyses are unable to

classify the classes present in the data set (17). Therefore,

developing a powerful algorithm to find biologically significant

genes with an eminent classification precision is advantageous.

Support vector machine (SVM) is a popular supervised

classification method. SVM applies kernel functions to carry

out classification on non-linear data. It can also be employed to
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select features in association with the recursive feature

elimination (RFE) approach (18). The prior treatment of data

may help find more accurate gene classifiers that also have

critical functions in the disease progress (19).

In this study, we proposed a pipeline to find the significant

gene classifiers that may also have critical roles in the

progression of COVID-19. To this end, the differential

expression genes (DEGs) and weighted-gene co-expression

(WGCN) analyses were used to find the genes relevant to

COVID-19 development. Afterward, the identified gene groups

were used as input for the RFE-SVM algorithm, and robust and

accurate classifier genes were found. Finally, the function of

these genes was biologically discussed.
Materials and methods

Dataset collection and preprocessing

We downloaded six RNAseq datasets from the Gene

Expression Omnibus (GEO) depository comprising 392

samples derived from whole blood or peripheral blood

mononuclear cells (PBMCs). We divided the datasets into

train and test groups, so that GSE157103 (20), GSE155454

(21), GSE152641 (22), GSE161731 (23) were put in the train

group as well as GSE166424 (24) and GSE152418 (25) in the test

group. The details of the datasets are described in Table 1. A total

of 288 and 75 patient and healthy samples, respectively, were

placed in the train set; and 52 and 19 patient and healthy

samples, respectively, in the test set. We mapped the Ensemble

identifiers in each dataset to Entrez gene identifiers to simplify

the integration analysis. We also considered technical

heterogeneity as the datasets were profiled by various

manufacturers. We applied “ComBat_seq” in the sva package

executed in the R environment to remove batch effects among

different datasets (26). We filtered out the genes with an average

count of less than three and the ones with a standard deviation

lower than the first quartile of the standard deviation of all genes.

We resolved the within-group outlier by removing the samples

that had a less average Pearson correlation with other samples

than the first quartile of Pearson correlations between all sample
TABLE 1 Details of the datasets included in the train and test analysis.

Dataset Platform Number of samples

Train GSE157103 Illumina NovaSeq 6000 (Homo sapiens) Healthy: 26 Covid-19: 100

GSE155454 Illumina HiSeq 4000 (Homo sapiens) Healthy: 6 Covid-19: 52

GSE152641 Illumina NovaSeq 6000 (Homo sapiens) Healthy: 24 Covid-19: 62

GSE161731 Illumina NovaSeq 6000 (Homo sapiens) Healthy: 19 Covid-19: 74

Test GSE166424 Illumina HiSeq 4000 (Homo sapiens) Healthy: 2 Covid-19: 36

GSE152418 Illumina NovaSeq 6000 (Homo sapiens) Healthy: 17 Covid-19: 16
A total of 288 and 75 patient and healthy samples, respectively, were placed in the train set; and 52 and 19 patients and healthy samples, respectively, in the test set.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1001070
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zarei Ghobadi et al. 10.3389/fimmu.2022.1001070
pairs. As a result, 321 training samples (64 healthy and 257

COVID-19) were selected for further analysis. We finally

normalized the count data using the TMM method (27)

executed in the edgeR package

(28) and used the log-transformed normalized count table

for further analysis.

A total of 11560 common genes were involved in the

analyses. In order to survey the severe and non- severe

COVID-19 conditions, the RNAseq datasets including

GSE152418 (25), GSE171110 (29), and GSE178967 as well as

miRNA dataset GSE176498 (30) were also downloaded from

GEO. These datasets contain the RNAseq data related to healthy

as well as severe and non-severe (mild to moderate) COVID-19

samples. The details of these datasets are explained in Table 2.

After performing batch effect and filtering out samples, a total of

102 non- severe and 40 severe samples were considered for the

train set. And 49 non- severe and 20 severe samples were put in

the test set. The miRNA dataset included 18 non-severe and16

severe specimens.
Hybrid feature selection framework

To determine the significant genes, a hybrid method

consisting of filter and wrapper approaches is proposed. The

filter segment includes two stages: Identification of the co-

expressed gene groups (modules) and DEGs. The significantly

correlated modules with disease conditions are firstly identified

and then the genes that are also among DEGs are found for each

module. Eventually, RFE-SVM is employed for the wrapper

phase to identify the foremost gene groups with special

biological functions as the classifiers. The flowchart of the

proposed procedure is depicted in Figure 1. In the following,

the methods used for each stage are described.
Weighted gene co-expression network
analysis

In order to determine the co-expressed genes (modules), we

used weighted gene co- expression network analysis utilizing the

WGCNA package in R (31). To this end, a similarity matrix
Frontiers in Immunology 03
comprising Pearson correlation among all gene pairs was

initially created. Next, the soft-thresholding power b was

determined by considering scale-free topology fit index 0.8.

The weighted adjacency matrix was thereupon calculated by

enhancing the elements of the similarity matrix to the soft-

thresholding power b and adopting the parameters as follows:

type = “signed”, corFnc = “bicor”. Afterward, a topological

overlap matrix (TOM) containing the connectivity amount of

the gene network was constructed. The dynamic hybrid tree

cutting algorithm and “hclust” function were employed to

produce the modules by cutting the hierarchical clusters.

Finally, the close clusters were merged and ultimate gene

groups were identified. Moreover, the modules that were

preserved in the external dataset (test set) were determined

through module preservation analysis. For this purpose, the

“modulePreservation” function in the WGCNA package, as well

as permutation-based statistics to find Zsummary and

medianRank scores, were employed. Herein, a module with

Zsummary <2 and medianRank >8 was defined as non-

preserved, a module with 2< Zsummary ≤ 8 and medianRank

<8 was interpreted as moderate-preserved, and a module with

Zsummary >10 and medianRank <8 was considered as highly-

preserved (32, 33).
Determination of differentially expressed
genes

To determine the differential expression of genes, the

Bioconductor package DESeq2 was employed (34).

The statistically significant DEGs were detected by applying

Benjamini-Hochberg adjusted p-value (35) cutoff of less

than 0.05.
Recursive feature elimination- support
vector machine

To pick out the optimal features with a higher discriminative

power, RFE-SVM was executed based on tenfold cross-

validation (RFECV- SVM). RFE-SVM is fundamentally a

backward elimination method. However, the top-ranked
TABLE 2 Details of the datasets related to the severe and non-severe Covid-19.

Dataset Platform Number of samples

GSE171110 (mRNA) Illumina HiSeq 2500 (Homo sapiens) severe Covid-19: 44

GSE178967 (mRNA) Illumina NovaSeq 6000 (Homo sapiens) severe Covid-19: 12 non-severe Covid-19: 160

GSE152418 (mRNA) Illumina NovaSeq 6000 (Homo sapiens) severe Covid-19: 8 non-severe Covid-19: 4

GSE176498 (miRNA) NextSeq 550 (Homo sapiens) severe Covid-19: 16 non-severe Covid-19: 18
After removing batch effect and filtering out samples, 102 non- severe and 40 severe samples were considered for the train set; 49 non- severe and 20 severe samples were put in the test set.
The miRNA dataset included 18 non-severe and16 severe specimens.
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variables are not essentially the features that are most relevant.

They are actually the most related conditional on the particular

ranked subset in the model (18). Top-ranked variables that are

excluded in the last iteration of RFE-SVM are the most

significant, while the bottom-ranked variables are the least

informative and are excluded in the initial iteration (35).

RFECV- SVM includes five stages: (i) training SVM on the

training dataset based on tenfold cross-validation; (ii)

computing ranking criteria based on the calculated SVM

weights; (iii) removing features with the smallest ranking

criteria; (iv) updating dataset based on the selected features

and repeating the process; (v)

feeding the subset of the optimal selected features into the

SVM classifier to evaluate the discriminative performance.

Eventually, the optimal variable subset with superior

discriminative performance is chosen (36, 37). The codes were

written in Python 3.
Pathway enrichment analysis

In order to explore the biological pathways enriched

by significant classifier genes, the ToppGene webtool (38)

was employed. For this purpose, the ToppFun tool which

identifies functional enrichment of input genes according to

transcriptome was utilized.
Frontiers in Immunology 04
The top and most related pathway terms with a q-value FDR

Benjamini-Hochberg <0.05 were considered for further

interpretations.
Results

Identification of co-expressed gene
modules and DEGs

To identify the co-expressed gene groups related to COVID-

19, the weighted gene co- expression network was built. The

power b= 3 was acquired as the optimal soft-thresholding power.

After calculating adjacency and TOM matrixes and thereupon

genes clustering, the neighbor clusters (modules) were merged

by adjusting the threshold value to 0.25. As a consequence, 16

modules were resulted (Supplementary Table 1). Moreover,

Figure 2A illustrates the cluster dendrogram and modules

before and after merging. The branches of the dendrogram

cluster demonstrate the compact interconnected and also

highly co- expressed genes. Figure 2B indicates the identified

modules and their correlations. The unparalleled colors show the

individual modules. Next, the module-trait analysis was utilized

to identify the significant correlation between modules and

COVID-19 (39). Figure 3 shows the module-trait relationships

in which the vertical axis indicates the module names and the

horizontal axis indicates different conditions. The p-value<0.05
FIGURE 1

Flowchart of the proposed procedure in this study.
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and correlation>0.25 specifies the modules that considerably are

correlated with healthy or COVID-19 conditions. From this

analysis, modules including cyan, darkturquoise, lightyellow,

midnightblue, and orange were detected as modules with a

remarkable correlation with COVID-19 (Smodules). The

module preservation analysis revealed that all the mentioned
Frontiers in Immunology 05
modules were preserved in the external test dataset

(Supplementary Table 2).

In the next stage, 2203 genes were identified as differentially

expressed genes considering Benjamini-Hochberg adjusted p-

value < 0.05 (Supplementary Table 3), of which 1481 genes were

down-regulated (blue color) and 722 were up-regulated (red
FIGURE 3

The module-trait relationships, in which the correlation and p-value between modules (vertical axis) and each condition (horizontal axis) are
specified.
A B

FIGURE 2

(A) The cluster dendrogram and modules before and after merging. The branches of the dendrogram cluster demonstrate the compact
interconnected and also highly co-expressed genes; (B) The merged modules and their correlations. Each color demonstrates an individual
module.
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color) as visualized in the volcano plot (Figure 4). To determine

the co-expressed genes that were also determined as DEGs, the

common genes between DEGs and genes in Smodules were

identified (DE_Smodules) (Supplementary Table 4).
Performance analysis using RFECV-SVM
analysis

The RFECV-SVM analysis was applied to compute the

obtained accuracy when DEGs, Smodules, and DE_Smodules

were used as train data. To validate our proposed hybrid

approach, external datasets (test sets) were employed. For this

purpose, our proposed method was used to evaluate the accuracy

degrees. The accuracy results are mentioned in Table 3. Figures

S1-S5 demonstrate the confusion matrixes, classification reports,

and ROC curves for Smodules. Figures 5A–E also show similar

plots for DE_Smodules (common genes between the modules

and DEGs). The confusion matrix shows the number of true and

predicted labels in healthy (label 0) and COVID-19 (label 1)

subjects. The classification report demonstrates the precision,

recall, and F1-score for each group. We considered modules that

have an accuracy higher than 0.85 for both train and test sets.
Frontiers in Immunology 06
The highest accuracy degrees and classification parameters

including precision, recall, and F1-score were acquired for

modules of cyan and lightyellow. The obtained classier genes

for these two modules are mentioned in Supplementary Table 5.

Therefore, these genes could be considered promising

biomarkers and therapeutic targets for COVID-19.
Gene enrichment analysis

The pathway enrichment analysis for the identified classifier

genes in two groups was carried out. The results disclosed that

the genes belonging to the cyan module are involved in

“Unwinding of DNA”, “NAD+ metabolism”, “CDK Regulation

of DNA Replication”, “Protein export”, “DNA replication”,

“Activation of ATR in response to replication stress”, and

“Kinesins” as well as genes belonging to greenyellow module

in “Interferon alpha/beta signaling”, “Cytokine Signaling in

Immune system”, “Interferon gamma signaling”, “Host-

pathogen interaction of human corona viruses - Interferon

induction”, “Antiviral mechanism by IFN-stimulated genes”,

“ISG15 antiviral mechanism”, “Type II interferon signaling

(IFNG)”, “NOD-like receptor signaling pathway”, “Type I
FIGURE 4

Volcano plot representing differential gene expression between COVID-19 and healthy subjects. The up-regulated and down-regulated DEGs
are depicted by colors of red and blue, respectively. The non-DEGs are specified by the black color.
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Interferon Induction and Signaling During SARS-CoV-2

Infection”, “SARS-CoV- 2 Innate Immunity Evasion and Cell-

specific immune response”, “SARS coronavirus and innate

immunity”, “Non-genomic actions of 1,25 dihydroxyvitamin

D3”, “Type III interferon signaling”, “Adaptive Immune

System”, “IL-10 Anti-inflammatory Signaling Pathway”, “Class

I MHC mediated antigen processing & presentation”, “Pathways

of nucleic acid metabolism and innate immune sensing”

Supplementary Table 6. As a whole, cyan DE_Smodule is

related to cell dysregulation and lightyellow DE_Smodule

corresponds to innate immune suppression.
Classifier genes and miRNAs between
severe and non-severe COVID-19

The same WGCNA and DEG analyses were performed to

determine the related gene groups for severe and non-severe

COVID-19 samples. The WGCNA was performed by adjusting

the power b to 4. Figure S6 indicates the cluster dendrogram and

modules before and after merging modules. As a result, 11

modules were identified (Supplementary Table 7). Figure S7

demonstrates the module-trait relationships for healthy; and

severe and non-severe COVID-19 conditions. Considering p-

value< 0.05 and correlation>0.25, module yellow has a

remarkable correlation with non-severe COVID-19, black with

severe COVID-19, and brown with opposite correlation values

with both conditions (Smodules). The preservation of these

modules in the external test dataset was also confirmed

through module preservation analysis (Supplementary

Table 8). A total of 504 DEGs between severe and non-severe

COVID-19 were determined considering Benjamini-Hochberg

adjusted p-value <0.05 and |logFC|=2 genes (Supplementary

Table 9), of which 477 genes were upregulated and 27 were

downregulated as indicated in the volcano plot (Figure 6).

Afterward, common genes between co-expressed genes in each

modu le and DEGs (DE_Smodule ) were exp lored

(Supplementary Table 10). The yellow, brown, and black

DE_Smodules were used as train input for RFE-SVM. Among

them, module brown showed the acceptable accuracy for the

train (0.93) and test (0.85) sets as well as other classification

parameters (Table 4; Figure 7; Figures S8, S9) with 25 selected

features including ANKRD20A8P, CHST3, DNM1P51, DUX4,
Frontiers in Immunology 07
FAM201B, GAD2, GAN, HOXB13, MAB21L4, MTCYBP11,

MTND4P22 , MTND5P24 , OR1D2 , OR52A1 , OR6U2P ,

OR7E25P, PBOV1, PIGFP2, PTPN5, REXO1L1P, RHOXF2B,

RPL35P3, TNFRSF6B, TPM4P1, and VWC2.

These genes were mostly enriched in the metabolic pathways

like Alanine, aspartate and glutamate metabolism; beta-alanine

metabolic; butanoate metabolic; and chondroitin sulfate

biosynthesis. We further identified 95 differentially expressed

miRNA (DEmiRNAs) considering Benjamini-Hochberg-

adjusted p-value <0.05 between severe and non-severe

conditions (Supplementary Table 11). In order to identify the

experimentally validated genes for the mentioned DEmiRNAs,

miRTarBase database was explored. As a result, a total of 58

miRNAs was determined (Supplementary Table 12, sheets 1,2).

Then, the common target genes with 25 identified genes as

classifiers were found. The resulting miRNAs-target network is

depicted in Figure 8. From this analysis, miR-34a-5p, miR-122-

5p, miR-197-3p, miR-122-5p, miR-1307-3p were upregulated;

and miR-98-5p, miR-150-5p, miR-340-5p were downregulated.

They target genes comprising GAN, VWC2, TNFRSF6B, and

CHST3. The miRNAs actually suppress gene expression.

However, the network between genes and miRNA is

complicated in the human body. Therefore, such subnetworks

containing the up-regulated miRNA and genes are not

unexpected (13). These miRNAs and their target actually

determine the destiny of SARS-CoV-2 infection toward severe

or non-severe COVID-19. Therefore, they could be noted for the

design of proper treatment.
Discussion

The rapid universal dispersion of COVID-19 obligates the

survey on the dysregulation in the molecular factors due to the

SARS-CoV-2 infection. Therefore, the dysregulated genes can be

followed to find the possible pathogenesis mechanism as well as

therapeutic and diagnostic targets. In this study, we performed

sequential steps to identify the classifier genes that differentiate

Covid-19 patients from healthy ones. To this end, WGCN and

DEG analyses were employed to select the biologically important

features (filter phase) and also the dimensional reduction of the

data. Afterward, RFECV-SVM as an efficient approach was used

for finding the classifiers and optimizing their performance
TABLE 3 Accuracy of train and test sets; and number of features when genes in Smodules and DE_Smodules were used.

Data Accuracy (Smodules) Accuracy (DE_Smodules)

cyan Train: 0.863 (0.063) Test: 0.89 Number of features: 2 Train: 0.859 (0.065) Test: 0.92 Number of features: 5

darkturquoise Train: 0.800 (0.123) Test: 0.72 Number of features: 15 Train: 0.832 (0.065) Test: 0.76 Number of features: 45

lightyellow Train: 0.881 (0.057) Test: 0.80 Number of features: 30 Train: 0.881 (0.046) Test: 0.87 Number of features: 84

midnightblue Train: 0.782 (0.059) Test: 0.73 Number of features: 33 Train: 0.785 (0.033) Test: 0.76 Number of features: 43

orange Train: 0.835 (0.054) Test: 0.80 Number of features: 16 Train: 0.804 (0.034) Test: 0.82 Number of features: 20
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(wrapper phase). Therefore, the combination of the

abovementioned approaches led to a powerful biologically

information-based machine learning for the identification of

biomarker classifiers. It was also used for classification of non-

severe Covid-19 from severe Covid-19 samples. However, due to
Frontiers in Immunology 08
the same origin of these two states of Covid-19, the accuracy was

not as well as that obtained for classification of the healthy and

Covid-19 subjects and was near to overfitting. It may also due to

the fact this module has high correlation with opposite sign with

both conditions. The accuracy and other machine learning
(a) (b)

(d)(c)

A B

D

E

C

(a) (b)

(d)(c)

(a) (b)

(d)(c)

(a) (b)

(d)(c)

(a) (b)

(d)(c)

FIGURE 5

The confusion matrix of (a) train set and (b) test set; (c) classification report; (d) ROC curve for DE_Smodules of (A) cyan, (B) darkturquoise, (C)
lightyellow, (D) midnightblue, (E) orange. The confusion matrix shows the number of true and predicted label in healthy (label 0) and COVID-19
(label 1) subjects. The classification report demonstrates the precision, recall, and F1-score for each group.
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parameters revealed two significant modules with 5 and 84 gene

classifiers for Covid-19 versus healthy subjects. The enrichment

analysis disclosed the remarkable roles of some of these genes in

innate immune suppression and cell dysregulation. Given the

fact that the samples used for gene expression profiling were

whole blood or PBMCs, we discussed the obtained genes in this

regard. The genes in the cyan and greenyellow DE_Smodules are

involved in immune response, particularly innate immunity and

cellular mechanisms such as DNA replication or protein

export.Moreover, the mechanisms related to Vitamin D and

the adaptive immune system were also activated in accordance

with our previous report (40). The most important dysregulated
Frontiers in Immunology 09
pathways by genes in greenyellow DE_Smodule are Interferons

response pathways by the function of USP18, RSAD2, UBE2L6,

GBP4, DDX58, GBP5, OASL, GBP1, GBP3, OAS2, OAS3, XAF1,

TRIM6, IFI27, TRIM14, IFI6, IFIT2, EIF2AK2, IFIT1, IFIT3,

TRIM5, STAT1, STAT2, HERC5, and MX1. Interferons are one

the main defense mechanism against most viral infections such

as hepatitis C, herpes simplex virus, measles as well as

respiratory viruses including influenza and coronaviruses (41–

43). Therefore, the obtained results are not surprising for the

SARS-CoV-2 infection. These genes are noteworthy due to their

importance in developing COVID-19 and also in the

pathogenesis, prognosis, diagnosis, and treatment of

the disease. However, it is important that these changes are in

the host’s favor and dysregulation of interferon’s responses is

one of the main mechanisms for viruses’ evasion from innate

immune responses. It reveals the substantial roles of these

responses in the control of viral infection (43). The

dysregulation of all three types of interferons (I, II, III) in

COVID-19 patients reveals the effect of infection on the

common genes of these cytokines (such as STAT1, STAT2). It

also confirms the particular status of interferons mechanism in
FIGURE 6

Volcano plot indicating differential gene expression between severe COVID-19 and non-severe COVID-19 subjects. The upregulated and
downregulated DEGs are displayed by colors of red and blue, respectively. The non-DEGs are depicted by the black color.
TABLE 4 Accuracy and number of features when genes in
DE_Smodules were used.

Module Accuracy

Yellow Train: 1 (0.00) Test: 0.75 Number of features: 1

Brown Train: 0.93 (0.08) Test: 0.85 Number of features: 25

Black Train: 1 (0.00) Test: 0.78Number of features: 1
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the SARS-CoV-2 infection so that it can be the main mechanism

that the virus employs to escape from the immune system (44).

Furthermore, “type I interferon induction and signaling during

SARS-CoV-2 infection” pathway were enriched in this study

which might support this assertion. It has been recently reported

that interferon therapy could decrease the time to clinical

improvement in COVID-19 patients (45) while there are also

contradicting reports about the time of therapy (46). Since

multiple genes are involved in the interferons production and

their functions, the interpretation of the effect of interferon

therapy could be complicated (43).

This complexity is more difficult considering the effect of

viral infection on many of these genes. SARS-CoV-2 can also

affect these genes (44). As a whole, the reports regarding the lack

of positive impact of interferons on COVID-19 are not

necessarily interpreted as the insignificance roles of them in

the progression of COVID-19. The results of this study also

highlight the role of adaptive response including interleukin-10

(IL-10) response, interferon gamma, antigen processing and

presentation (TRIM69, FBXO6, UBE2L6, DTX3L, HERC6,

HERC5). Since the role of the immune system in the control

of disease and its severity has been affirmed, these dysregulated

genes and pathways can be in favor or detriment of the host
Frontiers in Immunology 10
depending on the stage of the disease. According to the results of

our study and previous reports, both arms of the immune system

(innate and adaptive immunity) have a critical role in the

infection fate, so immunomodulation especially in a suitable

time of disease can be influential. As previously reported, one of

the important immunomodulators is vitamin D (47, 48). Several

clinical trials have been performed to survey the effect of vitamin

D on COVID-19. Considering the various functions of

immunomodulation including boosting antiviral immunity

and decreasing inflammation, vitamin D can be a proper

approach for COVID-19 treatment (40). Furthermore, due to

the high prevalence of vitamin D deficiency in the human

population, the prescription of vitamin D as a preventive

approach is also sensible. The level of vitamin D may also be

beneficial in the effectiveness of vaccines. Our study also

confirms the significance of vitamin D pathways with

functional roles of RSAD2, OAS2, IFI44L, STAT1, and STAT2

in the pathways of non-genomic act ions of 1 ,25

dihydroxyvitamin D3.

As mentioned before, the selected genes in the cyan module

are involved in the cellular mechanisms especially DNA

replication, intracellular transmission, and cell division. These

pathways were enriched by CD38, MCM6, SEC11C, and K1FC1.
A B

C

FIGURE 7

The confusion matrix of (A) train set and (B) test set; (C) classification report for DE_Smodules of brown. The confusion matrix shows the
number of true and predicted label in non-severe COVID-19 (label 0) and severe COVID-19 (label 1) subjects. The classification report
demonstrates the precision, recall, and F1-score for each group.
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Among them, CD38 has been mostly investigated in the immune

response. It involves signal transduction, adhesion, and calcium

signaling. Moreover, it has a critical role in inflammation and

also can be increased by the effect of other inflammatory factors

(49). Therefore, the dysregulation of CD38 in COVID-19 can

have a role in the control of infection and immunopathogenesis.

Moreover, the dysregulation of SEC11C has been reported in

COVID-19 (50). However, its function has not been discussed.

Although due to the diversity of cells in the blood like Treg, Breg,

TCD8+, TCD4+, B cells, etc., the dysregulation of these genes

leads to different effects on the cells and types of responses

including inflammatory and anti-inflammatory immune

responses. However, they could be substantial and potential

targets for good and poor prognosis as the early identification of

cases experiencing severe disease is very vital.

The function of selected genes in cyan and greenyellow

modules as the classifiers shows that immune response has a

substantial role in the destiny of infection. Furthermore, due to

the various outcomes of infection, the role of host genetics might

be highly important. Therefore, the investigation of single

nucleotide polymorphisms (SNPs) in these genes and their

roles in the disease prognosis, and also the therapeutic roles of

interferons and CD38 are proposed. The severity of COVID-19

with unclear major reasons could be varying from mild to severe

among the population (51). Further analysis of the miRNA-

target gene network revealed eight miRNAs including miR-34a-
Frontiers in Immunology 11
5p, miR-122-5p, miR-197-3p, miR-122-5p, miR-1307-3p, miR-

98-5p, miR-150-5p, and miR-340-5p that have different

expressions in the severe and non-severe (mild and moderate)

COVID-19.

miR‐98‐5p is an oestrogen‐responsive miRNA that can

attach and suppress the expression of IL‐6 and influence other

proinflammatory cytokines like TNF‐a, and interleukin-1b (52).

A distinguished incidence of intussusceptive angiogenesis was

also observed in the COVID-19 patients (53). In agreement with

this observation, miR-122-5p promotes angiogenesis and is a

strong pro-angiogenic factor that actuates vascular endothelial

growth factor signaling (54). MiR-122-5p and miR‐98‐5p target

CHST3 which is involved in cell adhesion through synthesizing

chondroitin 6-sulfate (55). The up-regulation of some cell

adhesion molecules in non-severe and dramatically in severe

COVID-19 have been reported and their contributions to

coagulation dysfunction have been suggested (56). Another

identified DEmiRNA is miR-1307-3p whose its higher

expression may result in a decrease in SARS-CoV-2 replication

through binding to the 3′ UTR site of the SARS-CoV-2 genome

(57). It targets VWC2 which may have a role in cell adhesion. We

also found a higher expression of CHST3 and VWC2 in severe

samples versus non-severe ones which confirms the

aforementioned claims.

The encoded protein GAN has a function in neurofilament

architecture and mediates the ubiquitination and degradation of
FIGURE 8

The miRNAs-target gene network. The up-regulated and down-regulated miRNA and genes are depicted by red and blue colors, respectively.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1001070
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zarei Ghobadi et al. 10.3389/fimmu.2022.1001070
some proteins. Ubiquitination represses replication by targeting

viral proteins for degradation and inciting innate antiviral

signaling pathways. It also boosts replication by simplifying

virion disassembly and viral entry (58, 59). GAN is targeted by

miR-150-5p, miR-340-5p, and miR-197-3p. The downregulation

of miR-340-5p and miR-150-5p can be an antiviral defense

mechanism of host cells by up-regulating GAN as has been

observed in influenza A and other RNA virus infections (60, 61).

Moreover, miR- 197-3p has an anti-inflammatory effect and its

up-regulation may also be because of the same mechanism of the

two above-mentioned miRNAs (62).

According to these observations, it seems that in the severe

condition of COVID-19, the antiviral defense mechanisms are

more activated. These results are in the line with the role of

immune responses in the pathogenesis of COVID-19 as

previously reported (51). MiR-34a-5p was also determined as

DEmiRNA. It regulates some mRNA targets involved in viral

diseases, endothelial, and inflammatory signaling pathways (63).

It targets TNFRSF6B which encodes a protein that has a

regulatory function in repressing LIGHT- and FasL-mediated

cell death. The cell death pathways have critical roles in

modulating the pathogenesis of disease after viral infection

(64). Primary infection and cell death are two major factors

that affect the disease course in COVID-19. Host genetics,

immune response, and environmental factors can also

contribute to determining infection outcomes (64–67).

Moreover, the classifier genes between severe and non-severe

COVID-19 were enriched in several metabolic pathways. This

indicates a remarkable activity of mitochondrial during COVID-

19 in agreement with recent mass spectrometer reports (68, 69).

Therefore, metabolic pathways and metabolites are key

dysregulated pathways and factors that probably determine the

fate of SARS- CoV-2 infection. Our study has some limitations.

We integrated several datasets containing samples of Covid-19

patients from different regions worldwide. It may affect the result

of the analysis, however, we tried to perform rigorous

preprocessing data analysis to remove outlier samples and

genes. Moreover, we did not consider the variants of Covid-19

because the reference datasets did not mention it.
Conclusion

In summary, we systematically explored the major

functional players with a highly accurate diagnostic power to

classify the COVID-19 vs. healthy as well as severe vs. non-

severe COVID- 19 subjects. The results revealed that the genes

involved in cell dysregulation and interruption of the immune

system are the main classifiers between COVID-19 vs. healthy.

Moreover, metabolic pathways should be considered as the

major pathways to possibly decline the effect of SARS- CoV-

2 infection.
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