We describe methods for assessing estimated dynamic stochastic general equilibrium (DSGE) models. One
involves the computation of alternative impulse responses from models constrained to have an identical
likelihood and the same contemporaneous signs as responses in the DSGE model. Others ask how well the
model matches the data-generating process; whether there is weak identification; the consequences of
including measurement error with growth rates of non-stationary variables; and whether the model can
reproduce features of the data that involve combinations of moments. The methods are applied to a
largescale small-open economy DSGE model, typical of those used at policy institutions.
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There are many issues raised when assessing output from any DSGE model such as the MSM.3
Section II looks at one of these. It stems from the fact that shocks are a pivotal feature of DSGE
models and that one can recombine them to produce different impulse responses and yet have

the same fit as the estimated DSGE model.4 When using the latter for policy scenarios we would
presumably want to know how big the range of alternative impulse responses is. We find such
alternative models after imposing two restrictions. First, the alternative model must fit the data
equally as well as the DSGE model. Second, the impulse responses to the named shocks from any
alternative model must have the same contemporaneous signs as those given by the estimated
DSGE model, in this case the MSM.5 To perform this task we utilise the fact that a DSGE model
solves for a Vector Autoregression (VAR) in all its variables, and this can be written in such a way
as to highlight its structural shocks. We refer to the resulting representation as a semi-structural
VAR (SSVAR) model. Because many DSGE models, including the MSM, imply there is
cointegration between certain variables, Section I1I also considers different representations

of the basic SSVAR from the MSM, moving towards a semi-structural vector error-correction
(EC) model. Such a representation is useful for a number of analyses of output from DSGE models
such as MSM.
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