

پردیس علوم و فناوریهای نوین دانشکده نانوفناوری

عنوان پایان نامه دکتری:

ارائه دهنده:

استاد راهنما:

استاد مشاور:

GLOW IN THE DARK TILES

فهرست مطالب

1. مقدمه (اهمیت شناسایی پرتوها و انواع آشکارسازهای هسته ای)

اهمیت شناسایی پرتوها و استفاده از حسگرها:

4

مقدمه

مقدمه

انواع آشکارسازهای تابشهای هسته ای:

حدتفکیک انرژی زمان تأخير نوع آشکارساز بازده خیلی خوب(%1) 😶 معمولی 煎 نیمه هادی μs ... خیلی کم 🙁 گازی خیلی کم • ms ... متوسط (20, *-6. /) 😶 زياد 1ns-µs •• سوسوزن ...

مقدمه

روشهای آشکارسازی:

شکل۱. انواع روشهای آشکارسازی

مقدمه

مقدمه

افزایش تعداد مطالعات و بررسی ها در حوزه
 حسگرهای سوسوزن

شکل3. درآمد بازار سوسوزن

شکل ۲. تاریخچه مواد سوسوزن

مبانی علمی

مبانی علمی

مکانیزم جذب و نشر:

شکل ۵- طرحوارهای از فرآیند انتقال انرژی در (a). CWO: Ag (b) CWO و CWO: Gd.(c) تحت تابش نور 290nm.

توليد نانوپودرها و ساخت لايه هاى نازک پليمرى

فعاليتهاي تجربي

شکل7. خلاصه مراحل تولید پودر تنگستات کادمیم به روش همرسوبی.

توليد نانوپودرهاي آلاييده:

شکل۸. خلاصه مراحل تولید پودر تنگستات کادمیم آلاییده به نقره/ گادولینیوم به روش همرسوبی.

فعاليتهاي تجربي

برآورد ضخامت مطلوب لايه ها:

شکل9. منحنی برد ذرات آلفا درنمونه های CWO: Ag ،CWO: Gd ،CWO و PES و SRIN و SRIM . برحسب انرژی ذرات آلفا حاصل از کد شبیه سازی SRIM.

تولید لایه های نازک پلیمری:

تحليل نتايج

تحليل نتايج

الگوی پراش پرتوی ایکس:

شکل۱۱. (الف). الگوی XRDنمونههای CWOتولید شده به روش سل-ژل و همرسوبی و داده های رفرنس.(ب). مقایسهٔ الگوی XRDنمونههای خالص و آلاییده.

^E Rietveld *10 ⁻³	d _{Rietveld} (nm)	ε _{Williamson} *10 ⁻³	d _{Williamson} (nm)	d _{Schrrer} (nm)	V(A ⁰) ³	γ (degree)	c(A ⁰)	b(A ⁰)	a(A ⁰)	نمونه
				27.85						CWO
										سل ژل
15.1±3.5	27.1±4.6	4.1	25.2	32	149.57	91.47	5.86	5.07	5.03	CWO
										همرسوبی
14.5±4.5	27± 8.4	9.6	34.2	34	149.62	91.56	5.86	5.07	5.03	CWO:
										Gd
										همرسوبی
7.8±0.9	31± 3.8	7.2	42	33	149.59	91.54	5.86	5.07	5.03	CWO: Ag
										همرسوبی
					149.3&	91.50&	5.857&	5.072&	5.029	تک بلور
					149.4	91.48	5.858	5.073	&5.028	CWO
					149.69	91.47	5.867	5.078	5.026	CWO
										هيدروترمال
				30&31			5.74	5.03	4.94&	CWO
							& 5.76	& 5.2	4.99	همرسوبی
11										
23										

تحليل نتايج

تصاوير SEM و TEM نانوپودرها:

CWO

CWO

CWO: Gd

شکل**۲۳. تصاویر TEM نانوپودرها**

CWO: Ag

CWO: Gd

شکل FE-SEM نانویودرها FE-SEM تانویودرها

جدول ۱ .اندازهٔ ذرات D(nm) نمونه CWO **62** CWO: Ag **68 53** CWO: Gd CWOهمرسوبی 100, 200 CWOهيدروترمال 150*25

24

تحليل نتايج

تصاوير EDAX-map:

25

طيف سنجي XPS نانوپودرهاي خالص و آلاييده:

W4s	W4d	W5s	W4f	نمونه
605	256.5	75	40	CWO

Gd3d _{5/2}	Gd3d _{3/2}	Ag3s	Ag3p ³	نمونه
		705	584	CWO:Ag
1118	1112			CWO:Gd

شكل 16. (الف) طيف XPS كلى براى CWO, CWO:Ag, CWO:Gd.

تحليل نتايج

طيف سنجي XPS:

O1s

538

537

537.5

شكل 16. (ب) طيف XPS قله محدود به 01s.

تحليل نتايج

طيف سنجي UV-Vis و DRS

نمونه

CWO

CWO: Ag

CWO: Gd

CWO_(Theory)

CWO_(Exp)

شکل 18- طیف کوبلکا-مونک برای (الف) نانویودر CWO، (ب) CWO: Gd و (ج) CWO: Gd.

شكل17 - (الف). نمودار جذب فرابنفش نانوپودرها، (ب). منحنی تاک طیف جذب نانوپودرها. 28

تحليل نتايج

طيف سنجي نورتابي (PL):

شكل19- مقايسة نتايجPL نانوپودرها (طول موج برانگيختگي 290nm).

طيف سنجي يون القايي(IBIL):

تحليل نتايج

جدول۳- طول موج بیشینه و نیز شدت بیشینه در منحنیهای PL و IBIL نمونههای خالص و آلاییده.

50000 -	CWO CWO: Ag	I ^{IBIL} (a.u.)	$I^{PL}_{emi}({ m a.u.})$	λ_{emi}^{PL}	λ ^{IBIL} shoulder	λ_{emi}^{IBIL}	نمونه
(ii) 40000 -				(nm)	(nm)	(nm)	
) fi 30000 -	CWO CWO: Ag Ion beam						
1 20000 -		27457.67	1000	468.05	460	495.43	CWO
10000 -		7548.33	626.17	467.8	460	495.43	CWO:Gd
		50171	1200	467.6	460	495.43	CWO:Ag
0 - 30	00 400 500 600 700 800						

شکل ۲۰- طیف IBILپودرهای تولید شده CWO:Ag، CWO:Gd و CWO:Gd.

Wavelength(nm)

تصاویر SEM لایه های نازک پلیمری:

تحليل نتايج

شكل ۲۱- تصوير SEM ، (a). مقطع عرضي لايه مركب پلي استر/ CWO:Ag، (b). سطح تحتاني، (c). سطح فوقاني لاية مركب.

کی انشگا، منان تحلیل نتایج

تصوير EDAX-map لايه نازك پليمري:

شكل27. (a) تصوير EDAX-map از مقطع عرضي لايه مركب پلي استر/ CWO:Ag.

تحليل نتايج

تصاویر SEM لایه های نازک پلیمری:

شکل 4-23-23 اویر FE-SEMاز (الف). سطح فوقانی (ب). سطح پشتی و (ج). مقطع عرضی لایه مرکب پلی استر/ پودر سوسوزن CWO:Ag.

تصوير EDAX-map لايه نازك پليمري:

34

تحليل نتايج

نتايج طيف ارتفاع پالس لايه ها:

شکل ۲۵- طیف ارتفاع پالس لایهها و زمینه (چشمه ^{۲۴۱}Am با اکتیویته Bq ۳۳۳۰).

جدول4- بهرة شمارش مطلق و خالص لايهها تحت چشمه ²⁴¹ Am با اكتيويته .									
	3330Bq								
R (%)	بهرهٔ شمارش مطلق (%)	نرخ شمارش خالص (CPS)	نمونه						
43	43	8731	CWO						
58	96	10524	CWO: Ag						
38	34	8439	CWO: Gd						

تحليل نتايج

نتايج طيف ارتفاع پالس لايه ها:

ضخامت تجربی (μm)	R (%)	بهرهٔ شمارش مطلق (٪)	نرخ شمارش خالص (CPS)	نمونه
54	11	28.56	531.22	CWO
53	13	58.18	1085.21	CWO: Ag
57	10.4	25.10	469.92	CWO: Gd

شکل۲۶ .طیف ارتفاع پالس لایه های انعطاف پذیر تقویت شده با CWO: Ag ،CWO و CWO: Gd به همراه طیف زمینه (چشمه آلفا ²⁴¹Am انرژی S.5 MeV).

اثر ضخامت بر خواص سوسوزنی:

تحليل نتايج

جدول 6. بهرة شمارش مطلق لايه مركب CWO:Ag با ضخامتهاي مختلف تحت s 100تابش چشمة ²⁴¹Am با اكتيويتة 1860Bq.

ضخامت تجربی (μm)	بهرهٔ شمارش مطلق (٪)	نرخ شمارش خالص (CPS)	نمونه
30	33.87	630.10	CWO:Ag-1
60	57.99	1078.70	CWO: Ag-2
100	20.51	336.40	CWO:Ag-3

پایداری سوسوزنی لایه نازک CWO: Ag:

جدول 7. بهرة شمارش مطلق لايه مركب CWO:Ag تحت چشمة ²⁴¹Am پس از گذشت 800 روز.

بهرهٔ شمارش مطلق(٪)	زمان(روز)	فعالیت (B q)	چشمه آلفا
~ 58	1	1860	²⁴¹ Am
~ 55.8	800	1860	²⁴¹ Am

نتایج آزمون کشش لایه مرکب polyester/CWO تحت استاندارد ASTM D18-889:

شکل ۲۸-نمودار تنش-ازدیاد طول نسبی برای لایه مرکب polyester/CWO.

شکل۲۷-نمودارتنش-کرنش به همراه تصویر لایه نازک polyester/CWO.

تحليل نتايج

مقايسه نتايج با مقالات

جدول۸- مقادیر نور خروجی، بهره شمارش مطلق، حد تفکیک انرژی و زمان تأخیر.

τ (<i>ns</i>)	Energy resolution (%)	Efficiency (%)	Light Yield (photon/MeV)	ماده سوسوزن
	11, 43	28.56,43		PES/CWO-α
	56, 13	58.18,96		PES/CWO:Ag-α
	10.4, 38	25.10, 34		PES/CWO:Gd-α
16020, 17700	62.5-90	34.67, 46.4, 48		ΡΜΑ/CWO-α
		52.3, 61.6		plexiGlass/CWO-α
20000, 19000	6.6		15000	CWO-γ

نتيجه گيري کلي

- 1. مشکل روش سل-ژل دشواری در رسیدن به محلول پایدار، حضور فازهای ناخالصی و بلورهای WO₃ و عیوب بالا در محصولات و تأثیرگذاری پارامترهای زیاد بر ویژگیهای محصولات؛
- **2. برای حل مشکلات مربوط به روش سل-ژل برای تولید نمونههای خالص و آلاییده از روش همرسوبی که ساده و**

کم هزینه است و امکان تولید محصولات در دمای محیط را فراهم میکند استفاده گردید.

3. اثر آلاینده ها با ظرفیت ها و عملکردهای متفاوت (نقره بعنوان فلز نجیب و گادولینیوم بعنوان فلز کمیاب خاکی (لانتانید)) بر ویژگی های نوری و سوسوزنی تنگستات کادمیم بررسی گردید.

نتيجه گيري کلي

- **3. حسگرهای سوسوزن انعطاف پذیر با خواص نوری مناسب تهیه گردیدند.**
- 4. آلایش CWO به Ag و Gd باعث تغییر بهرهٔ شمارش مطلق CWO به 96 و 25% شد.
- 5. آلایش CWO به Gd باعث کاهش حد تفکیک انرژی تا 10.4% و بهبود در کیفیت آشکارسازی شد.
 - **6. روش تهیه و ساخت حسگرها مقرون به صرفه بود و قابلیت تولید در مقیاس انبوه را دارند.**

- مقالات ISI
- مقالات داخلي
- مقالات كنفرانسي
- مقالات در حال مكاتبه

پیشنهادات برای کارهای آتی

- استفاده از غلظتهای بالاتر نقره تا مقادیر 3% اتمی در CWO برای دریافت بهرهٔ کوانتومی و بهرهٔ آشکارسازی بهتر
- آلایش نانوپودر تنگستات کادمیم به آلاینده های دیگر با ظرفیت 1+ و بررسی ویژگیهای نورتابی و سوسوزنی تحت تابش پرتوی x، γ و نوترون مقایسهٔ نتایج با مقادیر ارائه شده برای بلور
- ساخت لایههای نازک مرکب با پلیمرهای دیگر مانند پلی استایرن (PS) و PMMA که نانو ذرات :CWO Ag در آن توزیع شدهاند.
- بررسی اثرغلظتهای مختلف گادولینیوم بر ویژگیهای نورتابی و سوسوزنی تنگستات کادمیم تحت تابش پرتوی x، γ و نوترون.

