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Abstract: Increasing water demands, especially in arid and semi-arid regions, continuously 
exacerbate groundwater resources as the only reliable water resources in these regions. 
Groundwater numerical modeling can be considered as an effective tool for sustainable 
management of limited available groundwater. This study aims to model the Birjand aquifer using 
GMS: MODFLOW groundwater flow modeling software to monitor the groundwater status in the 
Birjand region. Due to the lack of the reliable required data to run the model, the obtained data from 
the Regional Water Company of South Khorasan (RWCSK) are controlled using some published 
reports. To get practical results, the aquifer boundary conditions are improved in the established 
conceptual method by applying real/field conditions. To calibrate the model parameters, including 
the hydraulic conductivity, a semi-transient approach is applied by using the observed data of seven 
years. For model performance evaluation, mean error (ME), mean absolute error (MAE), and root 
mean square error (RMSE) are calculated. The results of the model are in good agreement with the 
observed data and therefore, the model can be used for studying the water level changes in the 
aquifer. In addition, the results can assist water authorities for more accurate and sustainable 
planning and management of groundwater resources in the Birjand region.  

Keywords: groundwater modeling; GMS: MODFLOW; Birjand aquifer; calibration process 
 

1. Introduction 

Groundwater is a major source for drinking water, agricultural and industrial uses in arid and 
semi-arid regions. About 94.8% of Iran has an arid and semi-arid climate with low precipitation and 
high evapotranspiration rate and therefore, faces water scarcity [1,2]. It is estimated that around 
98.7% of freshwater is available as groundwater [3]. 

Due to less vulnerability to pollution and high reliability, groundwater resources are commonly 
preferred for drinking water supply [4]. Groundwater is often not affected by short-term drought 
and therefore, can be considered as a reliable drinking water resource. However, it is difficult to 
obtain precise knowledge of aquifers because they are not visible like surface waters [5].  

Groundwater models are the backbones of water resource planning and management in (semi) 
arid areas [6]. Nowadays, numerical modeling is considered an important tool for studying 
groundwater resources [7]. Generally, in groundwater models, a simplified mathematical 
representation of a groundwater system is solved by a computer program [8]. These models need 
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varieties of information—including geology, hydrogeology, hydrology, climatology, geography, 
etc.—to simulate the quantity/quality of the groundwater resources [9]. However, collecting such 
information, especially in developing countries, is a challenge and suffers from a high degree of 
uncertainty [10]. Quality of the input data in groundwater models has a significant effect on the 
model results. In other words, to get the accurate results, accurate input data should be ingested in 
the model [11]. Accordingly, the input data should be quality controlled and have the required 
resolution.  

In this study, a three-dimensional, block-centered (cell-centered), steady-state, finite difference 
model, MODFLOW (McDonald and Harbaugh [12]) is employed to quantify groundwater in Birjand 
plain, South Khorasan, Iran. In recent years, GMS: MODFLOW model (Groundwater Modeling 
System) has been successfully developed and published in a large number of groundwater 
quantitative and qualitative studies because of its simple methods, modular program structure, and 
separate packages to resolve special hydrogeological problems [10,13–30]. This model, with a 
graphical user interface (GUI), can be integrated with geographic information system (GIS) to 
provide an appropriate visual environment for groundwater resources evaluation and management 
[15]. MODFLOW is considered an international standard for simulating and predicting groundwater 
conditions and groundwater/surface-water interactions [31]. Although MODFLOW has been applied 
for Birjand Plain in some literature, the real conditions—including source/sinks, recharges, 
extractions, return flows, soil coverage, etc.—have not been considered in detail. To fill these available 
gaps in the literature and previous studies conducted about Birjand aquifer, the boundary conditions 
as well as the input parameters in the model have been improved to reduce the bias of the simulated 
parameters such as hydraulic head distribution in the aquifer. To reach this aim, the limited available 
data are investigated and applied in the model effectively. Due to the lack of required data time series 
(such as head and flow), a semi-transient approach is applied to calibrate the parameters. In the GMS: 
MODFLOW, there are only two main approaches including steady-state and transient. Using a semi-
transient approach allows consideration of the changes of the parameters in the study time period.  

In the current research, the available data and the measurements are analyzed regarding their 
quality. Then, these data are prepared to use in the numerical model of Birjand aquifer. The data has 
been received from the Regional Water Company of South Khorasan (RWCSK), to construct the 
aquifer mathematical model.  

In addition, the boundary conditions of the model are revised according to the available 
information. Using the measured values, the required parameters in the model are calibrated using 
a semi-transient method. Results show that the prepared model can be used in Birjand aquifer 
investigations and for predictions of the aquifer conditions under different development scenarios in 
the region.  

2. Materials and Methods 

2.1. Study Area  

According to Iran Water Resources Management Company (IWRMC) [32], the number of deep 
and semi-deep wells utilized for extracting groundwater has been increased as shown in Figure 1. It 
should be noted that the shown numbers of wells in Figure 1 include only the authorized wells that 
have been licensed for exploitation. Unfortunately, the total number of groundwater extracting wells 
(either with license or without one) in the country is much higher than the available numbers in 
Figure 1. For the study region, the situation is the same. In Figure 2, the consumption of groundwater 
in different uses in South Khorasan province is shown. Groundwater is the main source of water 
supply for all types of uses in this region.  
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Figure 1. The number of deep and semi-deep wells, qanats, and springs in the period of 2003 to 2016 
in Iran [32]. 

 
Figure 2. Percentage of groundwater use in different sections in South Khorasan province [33]. 

Birjand watershed, which includes the Birjand plain and the Birjand aquifer, is located in latitude 
and longitude of 32°36′ N to 33°8ʹ N and 58°41′ E to 59°44′ E, respectively. The location of the study 
region is shown in Figure 3. Birjand aquifer is located in an arid climate. The minimum, maximum, 
and the average temperatures recorded for the period 1989–2017 are −7.6, 38.3, and 16.6 °C, 
respectively. Due to the aridity of the region, the average annual precipitation is reported to be about 
158 mm and hence, there is no perennial stream in this area. The slope of the ground surface gradually 
decreases from the eastern part toward the west. The western parts of the study area are almost flat 
as shown in Figure 3. The length of Birjand aquifer is about 55.0 km and the width in the middle is 
about 6.0 km. The average long-term temperatures in the eastern and western parts of the Birjand 
watershed are about 14 and 16 °C, respectively. Also, the average long-term annual precipitation in 
the easternmost part is about 160 mm, while in the westernmost part of the desired area is about 120 
mm. Minimum and maximum annual evaporation occur in the easternmost part (2200 mm) and 
westernmost part of the watershed (3400 mm), respectively. Due to over-exploitation of Birjand 
aquifer through both authorized and unauthorized wells in the study area, this aquifer has been 
declared a prohibited aquifer. About 80% of groundwater discharge in the study area occurs through 
deep and semi-deep wells and the rest occurs through springs and qanats [34]. 
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Figure 3. Location of Birjand watershed and Birjand Aquifer in South Khorasan Province, Iran [35]. 

The groundwater level in Birjand plain, like most other plains in Iran, are continuing to decline 
due to long-term droughts and excessive extraction, especially by the agriculture sector. Over a 30-
year period from 1987 to 2018, the average monthly groundwater level has dropped from 1354.22 m 
to 1340.51 m (i.e., drawdown about 14.0 m). It means that the water level in Birjand aquifer, as the 
main source of water supply in the city of Birjand, has declined annually by an average of about 0.45 
m over the past 30 years (Figure 4). Consequently, the total deficit of the Birjand groundwater 
reservoir has been 193.63 million cubic meters (MCM) with an average annual deficit of 6.45 MCM. 
This situation shows that the Birjand plain has been in a severe water crisis [36].  

 
Figure 4. Groundwater hydrograph of Birjand Plain during a 30-year period. 

Birjand aquifer is unconfined and in the context of climate change, unconfined aquifers in arid 
and semi-arid areas compared with ones in wet/rainy areas are more vulnerable. The reason is that 
the occurrence of droughts in arid and semi-arid areas exacerbates the aquifer’s condition through 
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decreasing in aquifer recharge [37]. This factor, along with other factors such as population growth 
and increasing demand, leads to a continuous decrease in groundwater resources in these areas. 

Investigating the geological maps of the Birjand plain area shows that the Birjand aquifer 
structure totally is related to the quaternary formation, dating from the quaternary period. The 
quaternary period began about two and a half million years ago and continues today, and is, in fact, 
the newest geological period. Therefore, from a geological point of view, the whole body of the 
Birjand aquifer consists of young deposits (Figure 5). The young quaternary deposits include 
sediments that are eroded and deposited by rivers in this area and are generally coarse-grained rock 
material. It should be noted that the young quaternary deposits that cover the whole Birjand aquifer 
have the highest share (about 25%) among the lithological units of the entire Birjand watershed.  

 
Figure 5. Birjand watershed geological map. 

Regarding the soil properties, the southern, eastern, and northern parts of the Birjand watershed 
are composed of high and relatively high mountains consisting of limestone, metamorphic rock, 
conglomerate, sandstone, and shale rocks. These areas are generally vegetation-free or with little 
vegetation. The central parts of the Birjand watershed are related to lowlands with relatively mild 
slopes. The central parts mainly have very deep soils, consisting of sedimentary rivers. The western 
part of the Birjand watershed also has relatively high hills, consisting of metamorphic rocks and shale 
in the north-facing part; and in the central- and south-facing parts: limestone, dolomitic, and 
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sandstone—generally coarse-grained. These areas are generally vegetation-free or very low on 
vegetation and have low/very low-deep soils. 

As seen in Figure 6, there are two aquifers in the Birjand watershed including Birjand aquifer 
and Marak aquifer. The areas of the Birjand and Marak aquifers are 277.8 km2 and 53.72 km2, 
respectively. These two aquifers are separated from each other due to the rising bedrock elevation 
between them.  

 
Figure 6. The study area and the exact location of Birjand and Marak aquifers. 

2.2. Groundwater Modeling of Birjand Aquifer 

Understanding a groundwater system usually requires drilling a large number of exploratory 
wells, drilling, and pumping operations, and conducting multiple geophysical experiments and a 
series of long-term experiments, which are expensive and time-consuming. Unfortunately, in the 
study area, very few field operations and surveys have been carried out and therefore, modeling the 
groundwater flow through a mathematical model can be very promising. 

There are some groundwater modeling programs which were developed on the basis of various 
methods. The most famous models (GUIs) are Visual Modular Three-Dimensional Finite-Difference 
Flow Model (Visual MODFLOW) [38], Finite Element Subsurface Flow System (FEFLOW) [39], 
Groundwater Modeling System (GMS) [40], etc. FEFLOW, which uses the finite element method for 
modeling, and GMS and Visual MODFLOW are the most popular software packages applied in 
groundwater studies [14,19,41–52]. 

The GMS software is a graphical user interface for many groundwater models such as 
FEMWATER, SEEP2D, SEAM3D, MT3DMS, MODFLOW (with many packages), RT3D, MODPATH, 
MODAEM, and SEAWAT. In this study, the MODFLOW model has been chosen due to its high 
efficiency and its extensive use in groundwater studies. This model simulates the flow in three 
dimensions using finite difference method for both steady-state and transient conditions. The 
MODFLOW numerical model is constructed based on the combination of two basic equations—the 
Darcy equation and the principle of conservation of mass, or mass balance.  

2.2.1. Governing Equations 

The three-dimensional groundwater flow with constant density through a heterogeneous and 
anisotropic porous medium can be described by the equation [12] 

∂
∂x

Kxx
∂h
∂x

+ ∂
∂y

Kyy
∂h
∂y

+ ∂
∂z

Kzz
∂h
∂z

± W  = Ss
∂h
∂t

  (1) 
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where Kxx , Kyy , and  Kzz  are hydraulic conductivity coefficients (L/T) in x, y, and z directions, 
respectively; h is the pressure head (L); Ss is specific storage (1/L); and W is recharge/discharge rate 
per unit volume (1/T). The environment is unconfined, isotropic, and heterogeneous (Kxx = Kyy =  
Kzz = K), and hence, the governing equation based on Dupuit assumptions [53] in two-dimensional 
form can be written as 

∂
∂x Kh ∂h∂x + ∂∂y Kh ∂h∂y ± W  = Sy

∂h
∂t (2) 

where  Sy is the specific yield (dimensionless).  
Due to the lack of long-term monitoring data for observational/operational wells, amounts of 

inflow/outflow to/from the Birjand aquifer are unknown and therefore, the simulations are limited 
to steady-state conditions. Although applying the steady-state groundwater model simulation in 
Birjand aquifer is a forced choice, we are trying to consider the real-world conditions in the modeling. 

2.3. Groundwater Conceptual Model of Birjand Aquifer 

The first and most important step in groundwater modeling is constructing the conceptual 
model of the groundwater system [54], which represent a simplified version of the actual aquifer 
system. Due to the complexity of the hydrogeological system, as well as the lack of data in the study 
region, the conceptual model and its structure is applied according to the available data [55]. 
Establishing the groundwater conceptual model in the study region suffers from many challenges 
including: 

• Lack of adequate knowledge and incomplete information about the physical properties of 
alluvial deposits of plain, which is the main reservoir of groundwater; 

• Lack of adequate and accurate statistics and information on meteorological and climatic 
parameters and other parameters in the study area for estimating the water balance components; 

• Lack of sufficient observation wells and other observations in the area; 
• Lack of accurate and adequate statistics and criteria on the method and extent of utilization of 

Birjand groundwater resource; 
• Lack of sufficient exploratory wells in the study plain to understand the physical and geometric 

characteristics of the aquifer; 
• Error in piezometer recorded values; 
• Lack of adequate pumping tests in the study area and therefore, lack of sufficient information 

on the hydrodynamic coefficients of the aquifer; 
• Lack of sufficient understanding of the hydraulic behavior of an aquifer’s surrounding 

formations and their relationship with the aquifer, and the consequent lack of proper and precise 
definition of boundary conditions; 

• Lack of sufficient information on the hydraulic connections between surface water (e.g., river or 
lake) and groundwater resources; 

• Lack of sufficient information for calculating agricultural, urban, and industrial backwaters; 

The different steps for developing the conceptual model of the Birjand aquifer are described in 
Figure 7. 



Water 2019, 11, 1904 8 of 21 

 

 
Figure 7. Flowchart of the building the conceptual model of Birjand aquifer. 

The aquifer geometry is determined according to the RWCSK data. A comprehensive study (e.g., 
lithology and geology studies) has been done in this research to be able to model the aquifer 
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boundaries (i.e., aquifer geometry) accurately in the model [35,56–62]. The bottom boundary (i.e., the 
bedrock in the aquifer) is also determined using the limited available geophysical study (geoelectrical 
soundings) carried out in Birjand Plain in 1971 (Figure 8). 

 
Figure 8. Location of geoelectrical soundings in Birjand aquifer. 

To define the sinks and sources in the aquifer model, the positions and amounts of 
withdrawals/discharges from each well should be determined. There are 187 pumping/extracting 
wells with recorded data in the study area which are applied in the model (Figure 9). The well data 
are obtained from RWCSK and their quality are controlled before importing to the model. Of the total 
wells used in the model, 26 wells are used for drinking water and sanitation, 9 wells for livestock, 26 
wells for industry and services, 119 wells for agriculture, and 7 for other uses. 

 
Figure 9. Location of pumping and observation wells (piezometers) in Birjand aquifer. P1, P2, P3, and 
P4 are for selected piezometers to check the groundwater level changes at the end of calibration and 
verification processes. 

2.3.1. Boundary Conditions 

The governing equations of the groundwater flow are solved using the finite difference 
approach. This requires that the boundary and initial conditions of the problem are described in 
details in the model [63]. The groundwater budget components of the Birjand aquifer provided by 
RWCSK are presented in Table 1. This budget can present a good view of the overall status of sinks 
and sources in the aquifer. 



Water 2019, 11, 1904 10 of 21 

 

Table 1. Birjand aquifer budget provided by RWCSK [64]. The values are in million cubic meters (MCM) per 

year. 

Inputs (MCM/Year) Outputs (MCM/Year) 

Lateral underground inflow 25.44 Discharge and extraction (well, qanat, 
spring) 

73.56 

Infiltration of precipitation 4.08 Lateral underground outflow 1.15 
Infiltration of runoff 4.47 Drainage 0.00 

Infiltration of agricultural wastewater 17.87 evapotranspiration 0.00 
Infiltration of drinking and industrial 

wastewaters 14.32 
The total volume of discharge 74.71 

The total volume of recharge 66.18 

In previous studies, different types of boundary conditions have been used in Birjand aquifer. 
In the present study, we are trying to apply precise aquifer input/output boundaries using geological 
surveys and satellite imagery through the Google Earth Pro software. 

To find the real-world conditions, a comprehensive investigation of the adjacent areas of the 
aquifer, geological conditions, lithology maps, the type of soils, and topography of the area has been 
done. Finally, by using this data, the lateral input boundaries or lateral recharge are defined in the 
model as follows: 

• In the northeast part of the aquifer, there is an exchange of groundwater between Birjand and 
Marak aquifers (Figure 6). The groundwater flow direction in this area is from the Marak aquifer 
towards Birjand aquifer (the water levels are higher in the outlet of the Marak aquifer) with the 
flow rate of about 3.56 million cubic meters per year.  

• The second input boundary area to the Birjand aquifer located in the south as shown in Figure 
10. The southern parts of the Birjand aquifer have the highest elevations of the land structure in 
the adjacent areas of the Birjand aquifer. In addition, there are alluvial fans as unconsolidated 
sedimentary deposits in these parts which, due to having steep slopes, can recharge the aquifer 
during the precipitation. 

 
Figure 10. Topography of the Birjand watershed which includes the Birjand aquifer. The numbers 
represent the elevation in m.s.l. 
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• There is another lateral input boundary in the northwest of the aquifer, which looks like a camel 
hump. In this area, there is a large fan-shaped alluvial cone that has been washed out or eroded 
over the years from high altitudes and dispersed in a large area with a perimeter of about 17.5 
km, as shown in Figure 11. Precipitation over this alluvial cone flows through specified paths 
and then penetrates into this vast area and joins the Birjand aquifer. 

 
Figure 11. Large alluvial fan as an input boundary or lateral recharge, located in the northwest of 
Birjand aquifer. The blue line shows the groundwater lateral recharge way. 

• Lithology, as well as soil type and soil texture investigations in the study region are identified 
the fourth input boundary. In Figure 6, the southern part of the aquifer and from the central side 
towards the west of the aquifer, geologically are formed from predominantly sandstone, 
siltstone, phyllite, slate, and minor limestone, which have very low permeability. As a result, 
due to the fact that water cannot penetrate rapidly, it becomes runoff and flows downstream, 
and penetrates as soon as it enters the aquifer’s alluvial zone, causing the aquifer recharge. The 
relatively high slope in this area, which speeds up the runoff from precipitation, as well as the 
presence of a large mountain above this rock that has average precipitation above the Birjand 
plain, are some factors that help to recharge the aquifer. The distance between the second and 
fourth major input areas (both of which are located in the southern part of the Birjand aquifer) 
mainly is not considered as an input boundary because there are relatively low elevations and 
slight/gentle slopes between these elevated areas in the southern part. In other words, in the area 
between these two inputs, the stone structure is far from the aquifer boundary. Due to aridity of 
this region (high evapotranspiration and small precipitation), the amount of water that 
penetrates in this area is not transported to the Birjand aquifer. 

• There is another input boundary in the northern areas of the Birjand aquifer. There are two large 
alluvial fans in this area, with a tip distance of about 7.2 km (Figure 12) and at the base, these are 
located entirely within the aquifer boundary and their distance is reduced by about half. These 
alluvial fans build a place for penetrating the runoffs to the aquifer and recharging it. In the 
upstream part of the right (eastern) alluvial fan, there are some human activities, such as leveling 
the ground, constructing a small earth dam, and farming. Therefore, input flows from this side 
can be ignored and considered as a no-flow boundary. However, the upstream of the left alluvial 
fan (western) remains almost virtually undisturbed without any considerable human activities. 
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Figure 12. Alluvial fans position at the northern boundary of the Birjand aquifer. The blue line shows 
the groundwater lateral recharge way. 

The above mentioned five main input areas are considered as specified head boundary or 
Dirichlet/first-type boundary conditions in the model. The rest boundaries are considered as no-flow 
boundaries or Neumann/second-type boundary conditions because there are no hydraulic 
connections between the aquifer and its neighbors (Figure 13). 

 
Figure 13. Boundary conditions of the model. 

It is assumed that the differences between the ground’s surface gradient and the groundwater 
level gradient are small and therefore, each input boundary’s head can be calculated based on the 
head of the adjacent observation well. Regarding this issue, the distance between the input boundary 
and adjacent observation well should not be too high.  

2.3.2. Model Parameters 

One of the most important parameters in a groundwater model is hydraulic conductivity. The 
hydraulic conductivity values can be calculated based on the transmissivity values (T) obtained from 
the pumping tests using the equation 
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K = T/B (3) 

where K represents hydraulic conductivity (m/d); T is transmissivity (m2/d); and B shows the 
thickness of the aquifer saturation layer (the difference between groundwater level and bedrock level 
in each point) (m). Finally, using inverse distance weighting (IDW) interpolation method in GMS, an 
approximate initial value of the aquifer hydraulic conductivity is obtained. 

Calculating the aquifer recharge often is one of the most challenging issues in groundwater 
studies. According to Table 1, the total amount of aquifer recharge—including the penetration of 
precipitation, surface runoff, agricultural, drinking, and industry wastewaters—is about 40.74 MCM 
per year. In this study, this amount of direct recharge distributed in the aquifer conceptual model 
based on the land use map. 

2.3.3. Model Computational Grid 

The results of the groundwater model depend on the size of computational grids. In this study, 
as shown in Figure 14, the grid cell size is 250 × 250 m in horizontal plane uniformly and the height 
of each cell is equal to alluvial depth in that point (i.e., the difference between earth’s surface and 
bedrock levels). The modeling grid consists of 79 rows and 224 columns. The total number of grid 
cells is 17,696, including 4088 active cells (all cells inside the aquifer are active) and 13,608 inactive 
(all cells outside the aquifer are inactive).  

 
Figure 14. 3-D grid created by GMS: MODFLOW for Birjand groundwater model. 

3. Results 

3.1. Model Calibration 

There are generally two kinds of calibration process; the first one is a trial-and-error process that 
should be manually changed repeatedly calibration parameters. This method can be considered as a 
fundamental first step for history matching because it can give the modeler much insight about the 
site modeled and how parameter changes affect different areas of the model and types of observations 
[65]. The second type is automated parameter estimation which in many cases can calibrate the model 
quickly. GMS contains an interface to the mentioned calibration called PEST (Parameter ESTimation) 
[66]. PEST calibration can be performed in two ways including zonal and pilot point. The first 
approach (i.e., zonal) is the most common one [67] and is applied in this study.  

For calibration, the hydraulic head data of 11 observation wells or piezometers in the study 
region is imported to model. Using the trial-and-error approach, attempts are made to minimize the 
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differences between calculated and observed head values. The quality of the calibration is evaluated 
using some indices including mean error (ME), mean absolute error (MAE), and root mean square 
error (RMSE) according to the equations 

ME = 
1
n  (ho-hc)i

n

i=1

 (4) 

MAE = 
1
n  (ho-hc)i

n

i=1

 (5) 

RMSE =  1n  (ho-hc)i
2

n

i=1

 0.5

 (6) 

where n is the number of piezometers; ho  and hc  show observed/measured and 
calculated/simulated head values (m), respectively. Calculation of the above mentioned statistic 
indices is useful in evaluating the merit of the calibration [68]. It should be noted that the GMS 
software provides ME, MAE, and RMSE values for each model run. Because both positive and 
negative residuals are used in calculation, ME value should be close to zero for a good calibration. 
MAE is calculated using the absolute values of the error (only positive values) and is a measure of 
the average error in the model. The root mean square error (RMSE) or the standard deviation (RMSD) 
(due to using the steady state results in calibration RMSE and RMSD are equal) is the average of the 
squared differences in measured and simulated heads. RMSE is less robust to the effects of outlier 
residuals. Thus, the RMSE is typically larger than the MAE. 

Calibration of the model is performed for steady-state in this study because the time series of 
groundwater flow are unknown. Instead of transient calibration, a semi-transient calibration 
approach is applied for Birjand aquifer. In this way, calibration of the model is carried out for seasonal 
data of the study period (about 7 years) as summarized in Table 2. The main reason for choosing a 
season as a time step is that the groundwater level changes in all observation wells were insignificant 
during a season. The average groundwater levels in each piezometer during each season were 
considered and entered to the model. The results show that there is a good agreement between the 
input data, calibrated parameters, and the assumption in the study period, and the model can be used 
beyond this time period.  

Table 2. Semi-transient calibration of Birjand groundwater model 

Season Mean Error (m) Mean Absolute Error (m) Root Mean Square Error (m) 
Spring 2018 −0.04 0.14 0.18 
Winter 2018 0.03 0.14 0.19 

Autumn 2017 0.00 0.16 0.22 
Summer 2017 0.03 0.17 0.20 
Spring 2017 0.13 0.17 0.23 
Winter 2017 0.14 0.19 0.25 

Autumn 2016 0.05 0.22 0.28 
Summer 2016 0.02 0.26 0.30 
Spring 2016 0.09 0.22 0.27 
Winter 2016 0.09 0.23 0.27 

Autumn 2015 0.04 0.27 0.33 
Summer 2015 0.05 0.28 0.32 
Spring 2015 0.16 0.26 0.35 
Winter 2015 0.15 0.27 0.31 

Autumn 2014 0.05 0.27 0.30 
Summer 2014 0.03 0.27 0.30 
Spring 2014 0.14 0.26 0.28 
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Winter 2014 0.12 0.25 0.27 
Autumn 2013 0.04 0.27 0.30 
Summer 2013 0.13 0.28 0.32 
Spring 2013 0.08 0.25 0.27 
Winter 2013 0.03 0.27 0.30 

Autumn 2012 0.01 0.24 0.31 
Summer 2012 −0.01 0.25 0.31 
Spring 2012 0.14 0.23 0.30 
Winter 2012 0.14 0.24 0.31 

Autumn 2011 0.06 0.24 0.33 
Summer 2011 0.06 0.25 0.33 
Spring 2011 0.13 0.23 0.31 

Due to the importance of hydraulic conductivity, model calibration can be used for determining 
this parameter. Regarding this issue, the Birjand aquifer is divided into 25 polygons or zones as 
shown in Figure 15. 

 
Figure 15. Distribution of hydraulic conductivity values in Birjand aquifer. 

To illustrate the difference between observed and calculated head values during the study 
period, four piezometers were chosen randomly according to Figure 16. The locations of these four 
selected piezometers are shown in Figure 9. As seen in Figure 16, the groundwater level almost 
continuously decreases in all selected piezometers in the study area. 
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Figure 16. The results of semi-transient calibration of the model, Birjand groundwater level changes 
as well as observed and calculated head values for the four selected piezometers include (a) 
piezometer 1; (b) piezometer 2; (c) piezometer 3; and, (d) piezometer 4, over a period of about 7 years 
as seasonal. 

As shown in Figure 9, all four piezometers are selected randomly from different areas of the 
aquifer to investigate groundwater levels. Accordingly, it is clear that P1 and P2 have a relatively big 
difference between observed and calculated head values. The reason is that these two piezometers 
are located in the western half of the aquifer. It should be noted that after investigating calibration 
results for all available piezometers and for all the seasons, we noticed that the difference between 
the observed and calculated heads in the piezometers of the western parts of the aquifer were a bit 
higher than the eastern piezometers. Investigation of observation wells data during different months 
and seasons showed that the temporal variation of the piezometers head values in the western half 
of the aquifer was more slowly than the piezometers in the eastern half. In other words, the 
groundwater level decrease over time in the western parts of the aquifer occurs more slowly than the 
eastern parts; Analysis of piezometer statistics showed that the average annual groundwater level 
drop in western piezometers was about half of the water level drop in eastern piezometers. Therefore, 
simultaneous calibration of the entire aquifer is a challenging issue and in this case, it is almost 
impossible to make the difference between the observed and calculated heads across all piezometers 
near to zero. 

In the present study, all error values reported for model calibration (and model evaluation in 
the next section) indicate mean values for each error at each season and these errors are general errors 
of the calibrated/evaluated model that derived from all available piezometers. 

3.2. Model Evaluation 

After the calibration process, the prepared model should be evaluated to prove the model is 
reliable in different conditions. In this section, the calibrated parameters for the most recent time 
(spring 2018) is chosen for evaluating the model results. As shown in Table 3, the agreement between 
the results of the model and the measurements is promising for both parameters including hydraulic 
conductivity (K) and recharge (R) and consequently, for the model. Similar to the calibration section, 
the groundwater level changes in the same four selected piezometers for model evaluation over 7 
years are shown in Figure 17. Each red point represents the amount of the head difference and 
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belongs to a spring season of a specific year that is specified beside each point. P1, P2, P3, and P4 are 
the selected piezometers as shown in Figure 9. 

Table 3. Evaluation results of Birjand groundwater model over a 7-year period 

Season. Mean Error (m) Mean Absolute Error (m) Root Mean Square Error (m) 
Spring 2017 0.06 0.13 0.20 
Spring 2016 0.05 0.19 0.24 
Spring 2015 0.06 0.20 0.27 
Spring 2014 0.05 0.18 0.23 
Spring 2013 0.03 0.19 0.24 
Spring 2012 −0.05 0.22 0.28 
Spring 2011 −0.03 0.22 0.30 

 
Figure 17. Difference between observed and calculated head values in four selected piezometers 
include (a) piezometer 1; (b) piezometer 2; (c) piezometer 3; and, (d) piezometer 4, at the end of model 
verification for a 7-year period. 

4. Conclusions 

Over-exploitation of the groundwater resources in most plains in Iran is common, and 
continuing the present pressure on these quite precious sources will lead to the occurrence of severe 
irrecoverable water stress in the country. In this study, the Birjand aquifer in South Khorasan 
province, Iran is investigated where the groundwater is the main source of water supply. The study 
area has been explained extensively. One of the major goals of this study is to improve the accuracy 
of the aquifer model and to overcome the data shortage, especially in the input boundaries. To do 
this, a semi-transient approach has been used in order to investigate the aquifer model during a 
period of time. Coupling MODFLOW with ArcGIS using GMS powerful software allows us to 
simulate the groundwater flow in the desired area. In the previous studies conducted for Birjand 
region, we noticed a great difference and disagreement in the considered boundary conditions as a 
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gap of the literature. In the present research, the comprehensive study in the Birjand region caused 
some important improvements in the Birjand aquifer model, especially in boundary conditions.  

The model calibration is done using steady-state and semi-transient approaches. The aquifer 
model was investigated for 29 seasons and the result presented. In addition, four piezometers were 
selected randomly from different parts of the aquifer to comprehensively showing the groundwater 
level changes in the entire area. To quantify the reliability of the model, some evaluation indices—
including mean error, mean absolute error, and root mean square error—are calculated. According 
to these indices, the performance of the model is promising. The approach was used in this study 
(i.e., semi-transient calibration) can be applied for other regions with a similar problem as well as 
similar condition. The findings of this study can improve the status of groundwater resource 
management in the Birjand region and contribute to the sustainable development of this vital 
resource. 
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A B S T R A C T   

Study region: Northeastern Iran. 
Study focus: In northeastern Iran, water needed for municipal and agricultural activities mainly 
comes from groundwater resources. However, it is subject to substantial anthropogenic and 
geogenic contamination. We characterize the sources of groundwater contamination by 
employing an integrated approach that can be applied to the identification of large-scale 
contamination sources in other regions. An existing dataset of georeferenced water quality pa-
rameters from 676 locations in northeast of Iran was analyzed to investigate the geochemical 
properties of groundwater. Gridding of the parameters graphically illustrates the areas affected by 
high concentrations of As, Cl− , Cr, Fe, Mg2+, Na+, NO3

− , Se, and SO4
2-. We then identified po-

tential anthropogenic and geogenic contamination sources by employing random forest (RF) 
regression modeling. 
New hydrological insights for the region: Random forest (RF) models show that the major ions, As, 
Cr, Fe, and Se content of groundwater are mainly determined by geology in the study area. 
Modeling also links groundwater NO3

− contamination with sewage discharge into aquifers as well 
as the application of nitrogenous and animal-waste fertilizers. Areas of high salinity result from 
evaporate deposits and irrigation return flow. Medium to high non-carcinogenic health risk is 
found in areas with high concentrations of geogenic As and Cr in groundwater. Our approach can 
be applied elsewhere to analyze regional groundwater quality and associated health risks as well 
as identify potential sources of contamination.   

1. Introduction 

Many parts of Iran, like other arid/semi-arid regions, rely on groundwater to satisfy its drinking, agricultural and industrial water 
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needs (Joodavi et al., 2015; Ashraf et al., 2021). Therefore, poor groundwater quality/groundwater pollution threatens water and food 
security in Iran. The chemical constituents of groundwater are determined mainly by the physical and chemical properties of an 
aquifer’s saturated and unsaturated zones, residence time and recharge type (Khanoranga and Khalid, 2019). The geochemical con-
ditions of an aquifer can result in high concentrations of various elements that are detrimental for human health such as As, Cd, Cr and 
F (Appelo and Postma, 2005). Anthropogenic activities can also introduce various pollutants of ions and trace metals to groundwater, 
for example through agricultural and industrial activities as well as human settlements (Barbieri et al., 2019; Ricolfi et al., 2020). 

The presence of different potentially toxic elements (PTEs) in groundwater originating from geological formations and human 
activities is reported in some of Iran’s sub-basins (Baghvand et al., 2010; Amiri et al., 2015; Dehbandi et al., 2017; Rezaei et al., 2018; 
Dehbandi et al., 2019; Hamidian et al., 2019; Heydarirad et al., 2019; Qasemi et al., 2019; Zendehbad et al., 2019; Sohrabi et al., 2020; 
Amiri et al., 2021a, b) 

Most groundwater quality studies use geochemical methods and approaches to interpret geochemical reactions along groundwater 
flow paths and to recognize geochemical patterns in an aquifer or a watershed (local-scale studies). However, identifying both the 
anthropogenic and natural sources of PTEs in groundwater can be challenging in large-scale studies of broad geographical areas where 
there are different geological and hydrogeological conditions and large gaps in testing locations. As a way to help resolve this, geo-
statistical models such as logistic regression and random forest have been used to relate various environmental parameters to 
contaminant concentrations in groundwater and allow to create the groundwater contamination hazard maps (Bretzler et al., 2017; 
Podgorski and Berg, 2020; Wu et al., 2020). 

This study provides a new application of geostatistical models for contamination source identification in groundwater resources 
through considering multiple parameters (salinity, nitrate and toxic elements) and different pollution sources. 

In this paper, we present a combined approach in the large-scale identification of the sources of major ions and toxic elements in 
groundwater by applying random forest modeling of Razavi Khorasan province, Iran. We first describe our statistical analysis and 
graphical representation of water chemistry to determine ionic relationships in groundwater. We then investigate the spatial distri-
bution of major and toxic elements and identify possible sources of groundwater contamination. Random forest modeling is then used 
to find relationships between contamination factors and the concentrations of toxic elements. Finally, we assess the health-risk of 
drinking groundwater. The findings help to understand water pollution drivers, promote stakeholder involvement, strategically plan 
for drinking water pollution prevention and manage health threats. 

Fig. 1. Groundwater sampling points and topography within the study area of Razavi Khorasan province, Iran.  
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2. Materials and methods 

2.1. Study area 

Razavi Khorasan province, located in the northeast of Iran, has a total area of 129,043 km2 and a population of 6,434,501 (Sta-
tistical Center of Iran, 2019). Its climate is arid to semi-arid with rainfall of 209.5 mm/year and mean temperature of 15.9 ◦C. About 87 
% of the water used in Razavi Khorasan province (5,318 MCM) comes from groundwater that is extracted predominantly from alluvial 
aquifers by 23,727 wells with an average depth of 76 m and an average flow rate of 11.2 L/s. About 86 % of the groundwater 
withdrawn is used for agriculture, with 7% going to cities and towns used for drinking purposes (Iran Water Resources Management 
Company, 2019). 

The geology of Razavi Khorasan includes unconsolidated Quaternary sediments, different sedimentary (sandstones, conglomerates, 
carbonate and evaporites), volcano-sedimentary, volcanic, intrusive, and metamorphic rocks and ophiolite series. Deposits of iron, 
copper, lead, zinc, chromite, aluminum, gold, arsenic, calcite, dolomite and rock salt are also found (Ghorbani, 2013). 

The Quaternary sediments are mainly found in alluvial fans and plains and host alluvial aquifers (Fig. 1), which are the main source 
of fresh water in the study area. The water table depth in the alluvial aquifers varies between 246 m close to foothills to less than five 
meters in the lower-elevation parts of watersheds with an average of 63 m (Iran Water Resources Management Company, 2019). 

2.2. Collection of groundwater geochemistry data sets 

This study utilizes an existing dataset of georeferenced concentrations (n = 676) of EC, pH, major cations (Ca2+, K+, Mg2+, Na+), 
anions (Cl− , HCO3

− , NO3
− , SO4

2-), and trace elements (Al, As, Cr, Cu, Fe, Pb, Se, V, Zn) from public-supply deep wells (n = 610), 
springs (n = 48) and qanats (n = 18) (Fig. 1). The average depth of sampled wells is 108 m. 

The data were collected by the Razavi Khorasan Water and Wastewater Company and the Razavi Khorasan regional water authority 
(2015–2018) as part of groundwater quality and pollution monitoring in the province (Joodavi, 2018). Sampling and Laboratory 
analysis methods are presented in the supplementary materials. 

All of the measured ions and elements were gridded using the Inverse Distance Weighting (IDW) interpolation method (Hutchinson, 
1989) in ArcGIS in order to display their spatial distributions. Relationships among the parameters were analyzed with descriptive 
statistics, correlation analyses and graphical representations (Piper diagrams and bivariate plots), which were together used to assess 
the basic hydrogeochemical processes and geochemical reactions. 

Furthermore, the saturation states of the groundwater samples with respect to different minerals were calculated using PHREEQC 
(Parkhurst and Appelo, 2013). The saturation index (SI) of a mineral explains the mineral dissolution/precipitation possibility in the 
aquifer. SI < 0 indicates subsaturation (dissolution) and SI > 0 suggests supersaturation (precipitation) (Appelo and Postma, 2005). 

2.3. Geostatistical modeling 

2.3.1. Selection of target and predictor variables 
Based on the geographical distributions of the dissolved ions and elements and their measured concentrations relative to WHO 

health-based guidelines (World Health Organization-WHO, 2017), the water quality parameters of As, Cr, EC, Fe, NO3
− , and Se were 

selected as targets for random forest modeling. Predictor variables relating to potential anthropogenic and geogenic contamination 
sources were identified based on hydrogeochemical analyses as well as previous studies (Shojaat et al., 2003; Esmaeili-Vardanjani 
et al., 2015; Nematollahi et al., 2016; Taheri et al., 2016; Zirjanizadeh et al., 2016a; Alighardashi and Mehrani, 2017; Qasemi et al., 
2018; Vesali Naseh et al., 2018; Hamidian et al., 2019; Zendehbad et al., 2019). Irrigated areas, urban areas, industrial areas, ophiolites 
and mafic rocks, intermediate to silicic volcanic (granitoid) rocks, carbonate rocks, marl/evaporite/loess, mineral deposits (metal ores) 
were considered as predictor variables. The attributes of independent variables are shown in Table 1 and the location maps are 
presented in the supplementary materials. 

The main lithologies and metal ore locations, provided in Supplementary Fig. 1, are obtained from geological maps of Razavi 
Khorasan Province published at 1:250,000 scale (Korehie et al., 2016) 

The locations of irrigated, urban and industrial areas were extracted from land use reports provided by Razavi Khorasan Man-
agement and Planning Organization (2019). All of the independent variables were available in raster format with province-wide 

Table 1 
Independent variables used in the RF model. All were available as rasters, which were ranked according to Table 2.  

Variable Source 

Distance to irrigated areas Razavi Khorasan Management and Planning Organization (2019) 
Distance to urban areas Razavi Khorasan Management and Planning Organization (2019) 
Distance to industrial areas Razavi Khorasan Management and Planning Organization (2019) 
Distance to ophiolites and mafic Korehie et al. (2016) 
Distance to granitoid rocks Korehie et al. (2016) 
Distance to carbonate rocks Korehie et al. (2016) 
Distance to marl/evaporite/loess Korehie et al. (2016) 
Distance to metal ore deposits Korehie et al. (2016)  
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coverage. New rasters were created with buffer zones at distances of 2.5, 5, 7.5 and 10 km around the features of interest. Each buffer 
distance was assigned a rank value from 1 to 5 according to Table 2. 

2.3.2. Random Forest (RF) modeling 
RF is an ensemble machine learning technique utilizing decision trees and can be used for classification or regression (Breiman, 

2001 and Biau and Scornet, 2016). In regression problems, a continuous response variable is predicted by growing and then averaging 
many decision trees, which vary by utilizing different randomly selected data rows (with replacement) in each tree and different 
predictor variables at each branch (Tahmasebi et al., 2020). 

Regression RF modelling was implemented using the Microsoft Excel add-in XLSTAT (Addinsoft, 2020). The main parameters of the 
RF model that must be specified are the number of variables randomly selected at each node (mtry) and the number of trees (ntree). 
The “mtry” value was set to p/3, in which p is the number of independent variables and “ntree” was set to 1000. The relative 
importance of the predictor variables in each model was assessed through the RF measure of importance, which gives the average 
model error when the independent-variable values are randomly sorted. 

The predictive ability of the RF models was evaluated by three criteria: coefficient of determination (R2), normalized root-mean- 
square error (NRMSE), and the Nash–Sutcliffe coefficient of efficiency (NSE) (Legates and McCabe, 1999), which are defined as 
follows: 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
/N

∑N

i=1
(Oi − Pi)

2

√

Omax − Omin
(1)  

NSE = 1 −

∑N

i=1
(Oi − Pi)

2

∑N

i=1
(Oi − O)

2
(2)  

where Oi is an observed value, Omin, Omax and O are the minimum, maximum and average of the observed values respectively; and Pi is 
the model predicted value and N is the number of observed data. If a model produces values that are the same as the observations, 
NRMSE and NSE values are 0 and 1 respectively. 

NRMSE shows the square of the differences between the predicted and the observed values in relation to the variability in the 
observed data. These three criteria together give insight into how well the models predict the observed data. 

2.4. Non-carcinogenic health risk assessment 

The health risk posed by exposure to the metal(loid)s As, Cr, Cu, Fe, Pb, Se, V, and Zn in groundwater was quantified using the 
hazard quotient (HQ) method of the USEPA (1999): 

HQ = CDI/RfD (3)  

CDI =
C × IR

BW
(4)  

where CDI is the dose of metal(loid) intake (mg/kg/day), RfD is the reference dose (mg/kg/day), which refers to the maximum 
acceptable dose of a toxic substance (Table 3), C is the concentration of metal(loid) (mg/L), IR is the ingestion rate of water, which was 
set to 3.49 for adults and 2.14 L/day for children (Tirkey et al., 2017; Radfard et al., 2019), and BW is body weight, which was taken as 
70 kg for adults and 22.3 for children (Fakhri et al., 2015). In this study ingestion of contaminated groundwater was considered as the 
only exposure route to PTEs (Ravindra et al., 2019). 

As the risk assessment is done for multiple metals and metalloids, the hazard index (HI) can be calculated from following equation 
(Qasemi et al., 2019; Sohrabi et al., 2020): 

Table 2 
Criteria used to create the ranked raster of in-
dependent variables.  

Distance (km) Rank 

<2.5 5 
2.5− 5 4 
5− 7.5 3 
7.5− 10 2 
>10 1  
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HI =
∑n

i=1
HQi (5) 

An HQ or HI value greater than 1 indicates medium to high chronic health risk (Yousefi et al., 2018), as outlined in Supplementary 
Table 2. 

3. Results 

3.1. Groundwater hydrogeochemical characteristics and spatial distribution of physico-chemical parameters 

Table 4 provides a statistical summary of the measured major anions, trace elements and other chemical parameters in the 676 data 
points along with the corresponding WHO guideline concentrations (World Health Organization-WHO, 2017). The gridded maps of 
these parameters are shown in Fig. 2. The ranking of major cation concentrations is generally Na+ > Ca2+ > Mg2+> K+. The ranking 
among the major anions is SO4

2− >Cl− > HCO3–. The measures of EC, SO4
2− , Na+, Mg2+, and Cr exceed the maximum permissible 

limits in more than 10 % of the samples. 

3.2. Factors controlling the major-ions chemistry in groundwater 

Plotting the samples on a Piper diagram (Fig. 3) reveals that 50 % of the samples belongs to the Na-Cl type followed by Ca-Mg-Cl (27 
%), Ca-HCO3 (15 %), Ca-Na-HCO3 (7 %) and Ca-Cl (2%). The Ca-Mg-HCO3 water type is mostly found in the northern part of the 
province where EC values are all less than 1000 μS/cm, which is likely due to the dissolution of carbonates (Supplementary Fig. 6). The 
predominance of the Na-Cl water type indicates that evaporites such as halite and gypsum/anhydrite strongly affect the groundwater 
chemistry. 

Bivariate plots of ionic constituents of studied samples are presented in Fig. 4. The ratio of (Ca2++Mg2+) to total cations (Fig. 4a) for 

Table 3 
Reference maximum acceptable doses (RfD) for each toxic metal(loid)s 
(USEPA, 2020).  

Chemical Parameter RfDingestion (mg/kg/day) 

As 0.0003 
Cr 0.003 
Cu 0.037 
Fe 0.3 
Pb 0.014 
Se 0.005 
V 0.009 
Zn 0.3  

Table 4 
Summary of the measured samples. Descriptive statistics of the hydrochemical parameters measured in the 676 groundwater samples in the study 
area.  

Category Parameter Unit Mean ± STDV1 UPL2 No. of samples exceeds UPL 

General 
EC μS/cm 1537.5 ± 1559.2 1500 228 (35 %) 
pH – 7.8 ± 0.1 8.5 0 

Major cations 

Ca2+ mg/L 59.5 ± 42.6 200 10 (1 %) 
K+ mg/L 2.2 ± 1.4 200 0 
Mg2+ mg/L 35.8 ± 23.8 50 122 (18 %) 
Na+ mg/L 175.8 ± 130.8 200 220 (33 %) 

Major anions 

Cl− mg/L 148.5 ± 144.6 250 110 (16 %) 
HCO3

− mg/L 269.7 ± 68.5 500 5 (1 %) 
NO3

− mg/L 19.3 ± 15.7 50 18 (2.7 %) 
SO4

2− mg/L 227.3 ± 184.5 250 237 (35 %) 

Trace elements 

Al μg/L 14.2 ± 5.2 200 0 
As μg/L 3.1 ± 2 10 8 (1 %) 
Fe μg/L 114.5 ± 108.5 300 43 (6 %) 
Pb μg/L 2.6 ± 1.2 10 0 
Cr μg/L 21.9 ± 26.8 50 113 (17 %) 
Cu μg/L 6.4 ± 4 2000 0 
Se μg/L 4.8 ± 2.8 10 30 (4 %) 
V μg/L 12.2 ± 13.9 100 0 
Zn μg/L 22.8 ± 38.5 3000 0  

1 Standard deviation. 
2 Upper permissible limit (WHO, 2017). 
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all samples is considerably less than one, which implies that other cations, such as Na+ and K+, are abundant in groundwater samples. 
The ratio of (Ca2+ +Mg2+) to (HCO3

− + SO4
2-) of most samples is less than one (Fig. 4b), which suggests that silicate weathering affects 

the Ca2+ and Mg2+ chemistry (Lakshmanan et al., 2003; Dehbandi et al., 2017). The ratio of Ca2+ to HCO3- for groundwater formed in 
dolomite and calcite aquifers is normally between 1/4 and 1/2 (Ledesma et al., 2014). However, only a few samples in Fig. 4c fall 

Fig. 2. Gridded maps of the hydrochemical parameters measured in groundwater in Razavi Khorasan province.  
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between these ratios, whereas most are higher. The ratio of some samples of Ca2+ vs. SO4
2- (Fig. 4d) is close to one, which suggests that 

these samples are in contact with gypsum and anhydrite (Wu et al. 2015). Examination of Fig. 4c and d suggests that Ca2+ is removed 
from water by reactions such as cation exchange. The plot of [(Na+ + K+) – Cl− ] against [(Ca2+ +Mg2+) – (SO4

2-+HCO3
− )] (Fig. 4e) 

confirms the cation-exchange process with Na+ increasing while Ca2+ decreases (McLean et al., 2000). 
The plot of the Na+/Cl− ratio against Cl− concentrations (Fig. 4f) shows that the ratio increases with decreasing salinity, with the 

Na+/Cl− ratio of the water samples ranging from 0.3 to 8.6. The majority of samples (97 %) has a molar ratio ≥1, which indicates that 
the relative abundance of sodium (Na+) could be related to ion exchange and/or silicate weathering. This plot also shows that samples 
with high EC values have a molar ratio equal or close to one, which is a sign of the dissolution of evaporite minerals (Sánchez-Martos 
et al., 2002; Taherian and Joodavi, 2021). Furthermore, EC is significantly corelated with Na+, Cl− , and SO4

2+ (Supplementary 
Table 3). 

The HCO3
− /Cl− ratio is an indicator of salinization, whereby values greater than one indicate low salinity in carbonate zones. 

Dissolution of evaporite minerals enriches Cl− in groundwater, which decreases the HCO3
− /Cl− ratio (Fig. 4f). As seen in Fig. 4h, the 

water samples have a wide range of Ca2+/Na+ ratios (0.1–10), which are inversely related to salinity. A high Ca2+/Na+ molar ratio 
indicates that carbonate dissolution is the dominant process in the aquifer (Ayadi et al., 2018). 

Moreover, the saturation index (SI) calculated by PHREEQC indicates that some groundwater samples are saturated with respect to 
calcite and dolomite (Fig. 5a, b, e), which confirms carbonate dissolution. 

On the other hand, all samples are undersaturated with respect to gypsum and halite. SIgypsum and SIhalite increase with TDS 
indicating dissolution of evaporite minerals (Fig. 5c, d). Plotting SIhalite versus SIcalcite (Fig. 5f) reveals two geochemical evolution 
trends in the aquifer. 

In relatively low salinity groundwater samples, mostly located in the northern areas and close to karst aquifers, the precipitation of 
Ca2+ and the dissolution of evaporite minerals along the groundwater flow path lead to a decrease in SIcalcite and increase in SIhalite 
(line I in Fig. 5f). In contrast, far from carbonate formations, for example in the northeast off the study area, the dissolution of 
evaporites and carbonate minerals in marl and loess formations causes a simultaneous increases in SIcalcite and SIhalite, EC (line ii in 
Fig. 5f). 

3.3. Geostatistical modelling 

Random forest (RF) regression models were used to help identify potential sources and processes of groundwater contamination. 
Based on the water quality assessment described above, six parameters (As, Cr, EC, Fe, NO3

− , Se) were modeled using the variables 
listed in Table 1. The model results are plotted against the observations in Fig. 6, which also includes the model-performance measures 
(R2, NRMSE and NSE). 

The performance of the models are generally considered acceptable, as NSE and R2 for all models are greater than 0.5 (Zhou et al., 
2019). The variables’ importance in each regression model indicates the strength of the relationship between a contaminant and its 
potential sources (Fig. 7). 

The EC model confirms that high salinity is found where evaporate deposits are found (Fig. 7a and Supplementary Fig. 1) and/or 

Fig. 3. Piper diagram representing the water types of the 676 groundwater samples.  
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considerable evapotranspiration has taken place. Evaporites can exist as geological formations, such as marl, halite, gypsum, loess or 
salt flats (pans), and their dissolution can considerably increase groundwater salinity (Sánchez-Martos et al., 2002). Furthermore, 
evapotranspiration from irrigated fields can increase soil and irrigation return-flow salinity (Foster et al., 2018). 

The NO3
− model shows that nitrate in groundwater is associated primarily with urban areas followed by agricultural activities 

(Fig. 7c). In the study area, human sewage in cities as well as many rural areas is traditionally discharged into absorbing wells, which 
leads to high levels of nitrate in groundwater (Qasemi et al., 2018; Zendehbad et al., 2019). Furthermore, there are about 752,500 ha of 

Fig. 4. Relationships between major ions showing geochemical reactions.  
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irrigated agriculture in Razavi Khorasan province on which nitrogenous and animal-waste fertilizers containing high levels of nitrate 
are applied (Alighardashi et al., 2017). 

The chromium model clearly indicates that ophiolite and ultramafic units are the main sources of chromium in groundwater. These 
ophiolite and ultramafic units usually consisting of peridotite, serpentinite, gabbro and chromite deposits (Shafaii Moghadam et al., 
2014). Chromium is typically present as Cr(III) and Cr(VI), with Cr(VI) being very toxic and more soluble and mobile in groundwater 
(Coyte et al., 2019). 

Cr(III) is found in minerals and can be oxidized and transformed to Cr(VI) in the existence of an oxides such as MnO2 (Bertolo et al., 
2011).  

Cr(III) + 1.5 MnO2 + H2O= HCr(VI)O4
− +1.5 Mn2++H+ (6) 

Groundwater arsenic in Razavi Khorasan is associated mainly with granitoid rocks (Fig. 7e). This is consistent with reported 

Fig. 5. Saturation Index (SI) for Calcite, Dolomite, Gypsum and Halite in groundwater samples.  
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geogenic arsenic-contaminated groundwater in Razavi Khorasan province (Hamidian et al., 2019), where arsenic release results from 
the weathering of sulfide minerals such as realgar, orpiment, and arsenopyrite in granitoid rocks (Ghasemzadeh et al., 2011; Alidadi 
et al., 2015; Alaminia et al., 2016; Taheri et al., 2016; Hamamipour et al., 2018). 

Some possible reactions leading to the release of arsenic from sulfide minerals can be found by the following reactions (Chelsea 
et al., 2014): 

orpiment dissolution:  

0.5 As2S3 + 3H2O = H3AsO3(aq)+1.5H2S                                                                                                                                     (7) 

arsenopyrite dissolution:  

FeAsS(s) + 1.5H2O+ 2.75 O2(aq) = Fe2
2++ H3AsO3 (aq)+ SO4

2− (aq)                                                                                            (8) 

Fig. 7d shows that the presence of metal ore deposits is the dominant predictor of iron concentration in groundwater. Previous 

Fig. 6. Performance evaluation criteria and the plots of the predicted concentrations generated by the RF models against the observed concen-
trations; R2: coefficient of determination, NRMSE: normalized root mean square error, NSE: Nash–Sutcliffe coefficient of efficiency. 
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studies indicated that iron can originate from trachyandesite and pyroclastic rocks in some parts of Razavi Khorasan province (Zir-
janizadeh et al., 2016b; Taghadosi et al., 2018). Moreover, the well-known Sangan iron skarn deposit, which is located in the 
southeastern parts of the study area, is another well-known source of iron (Golmohammadi et al., 2015; Sepidbar et al., 2017). 

The likely sources of groundwater contaminants based on the modeling results are summarized in Table 5. 

3.4. Health risk assessment 

A non-carcinogenic health risk assessment was conducted to estimate the probability of harmful effects of exposure to As, Cr, Cu, 
Fe, Pb, Se, V and Zn in groundwater used for drinking purposes. 

The average hazard quotient (HQ) values indicate that As and Cr make up 53 % and 28 %, respectively, of the total non- 
carcinogenic risk (HI) due to groundwater constituents for the total population. HI ranges between 0.33 and 7.33 (average of 1.67) 
for children and between 0.13 and 3.01 (average of 0.65) for adults. Fig. 8 shows that areas with medium to high-risk values for 

Fig. 7. Importance of the independent variables of the random forest models. The mean increase in error refers to the effect when a variable is 
randomly sorted. 

Table 5 
Summary of main groundwater contamination sources as inferred from the random forest regression models.  

Parameter Source(s) 

As Geology granitoid rocks 
Cr Geology ophiolites 
EC Geology/Agriculture marl/evaporite/loess\groundwater-irrigated agriculture 
Fe Geology metal ores 
NO3

− Urban/Agriculture waste water/fertilizer 
Se Geology marl/evaporite/loess  
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children largely coincide with zones of high As and Cr concentrations (Fig. 2). 
In addition to causing adverse non-carcinogenic health effects, arsenic and chromium are categorized as carcinogenic substances 

(World Health Organization-WHO, 2017). The chronic consumption of As-contaminated water may cause skin, bladder or lung cancer 
(Polya and Middleton, 2017; World Health Organization-WHO, 2017), whereby chromium, especially Cr(VI), is known to cause DNA 
damage (Agency for Toxic Substances and Disease Registry (ATSDR), 2012; Wang et al., 2017). 

4. Discussion 

Despite there being separate alluvial aquifer systems in the study area separated by mountains, the results show that the dominant 
lithology of the mountains is responsible for controlling groundwater chemistry and increasing the concentration of some PTEs in 
groundwater, such as As, Cr, Fe and V, beyond the river-basin/aquifer boundaries. This can be conceptualized by two phenomena 
presented in Fig. 9. 

If mountain block/front recharge exists, the chemistry of subsurface inflow directly affects the groundwater quality in alluvial 
aquifers (Fig. 9a) (Ajami et al., 2011; Joodavi et al., 2016). That is common in karst-alluvial aquifer systems in the northern parts of the 
study area where low salinity groundwater with Ca-Mg-HCO3 water type can be found in alluvial aquifers. Moreover, it is possible that 
this mountain system recharge is responsible for high concentrations of arsenic in the western parts of the province where arsenic is 
released by weathering of sulfide minerals in granitoid rocks. 

Even if the mountain block/front recharge component is not significant, the alluvial aquifers could contain particles from adjacent 
mountains (Fig. 9b) (Kaprara et al., 2014). The random forest model suggests that high Cr concentrations in groundwater are observed 
in the alluvial aquifers located not far from the ophiolitic rocks. While these rocks do not have a developed fractured storage system, 
the sediments of the alluvial aquifers originated from ophiolite and ultramafic units are likely the source of Cr in groundwater. 

Furthermore, the geological map show that marl/evaporites are mainly found in the southern and western parts of the region. 
Hydrogeological studies have shown that these units form the bedrock of alluvial aquifers in these areas (Joodavi et al., 2009; Izady 
et al., 2015). The random forest model results confirm that groundwater resources in these areas are more saline. 

The approach provided here identification of the sources of major ions and toxic elements in groundwater in regions lacking 
adequate monitoring programs and sampling data. Therefore, additional groundwater quality measurements and geochemical and 
mineralogical information as well as more information about the amount and chemistry of industrial wastewater would improve the 
robustness of the geostatistical models, especially in locations close to contamination sources such as industrial areas.” 

Another limitation of this study is that this method characterizes large-scale (macro-scale) spatial variation in the elements in 
groundwater. However, the chemical composition of groundwater samples may be affected by local hydrologic and hydrogeological 
factors. Future research will add consideration of these local factors such as residence time to accurately investigate the driving forces 
of groundwater quality. 

5. Conclusion 

Understanding the factors affecting and controlling groundwater quality is necessary to improve water security and public health 
through reducing water-related risks. 

Although most hydrogeochemistry studies try to interpret geochemical reactions along groundwater flow paths in an aquifer or a 
watershed, this paper proposed an approach to identify the sources of salinity, nitrate and PTEs in groundwater in large-scale studies of 
broad geographical areas where there are large gaps in testing locations. 

Integrated approaches of statistical analysis, conventional hydrogeochemical plots, and machine learning were employed in this 
study to characterize the groundwater chemistry in Razavi Khorasan province and identify likely sources of contamination. Hydro-
geochemical controls on groundwater quality and human health risk from harmful elements in the province were identified from 676 

Fig. 8. Spatial distribution of non-carcinogenic hazard index (HI) for (a) adults and (b) children.  
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groundwater samples in the study area. 
We found that the chemical composition of groundwater is determined predominantly by geology but also influenced by human 

activities. The Na-Cl water type along with high salinity levels in groundwater, Se and SO4
2− can be related to the dissolution of salts 

from geological formations as well as evapotranspiration and irrigation return flow caused by groundwater-irrigated agriculture. 
Random forest regression modeling has also shown that high concentrations of chromium, arsenic and iron in groundwater are 
attributed to the presence of ophiolites, granitoid (intermediate to silicic volcanic) rocks and metal ores (formed in pyroclastic rocks 
and skarn deposits), respectively. Moreover, discharging sewage directly into aquifers and applying fertilizers in agricultural activities 
result in high levels of nitrate in groundwater. A non-carcinogenic health risk assessment of PTEs (As, Cr, Cu, Fe, Pb, Se, V, Zn) in 
groundwater indicates that As and Cr constitute 53 % and 28 % of the total risk, respectively. 

The predictor variables used in the random forest modeling are readily available, making this integrated approach relevant for 
identifying potential regional groundwater contamination sources. The results can be used to develop cost-effective water quality 
monitoring programs for water resource planning and management in Razavi Khorasan province, Iran. 

CRediT authorship contribution statement 

Ata Joodavi: Conceptualization, Methodology, Writing - original draft. Reza Aghlmand: Data curation, Investigation. Joel 
Podgorski: Supervision, Writing - review & editing. Reza Dehbandi: Formal analysis, Validation. Ali Abbasi: Investigation, Writing - 
review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

This research was financially supported by Iran National Science Foundation (INSF), Grant Number 97008161 and the Swiss 
Agency for Development and Cooperation (project no. 7F-09963.01.01). 

Appendix A. Supplementary data 

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.ejrh.2021. 
100885. 

Fig. 9. Two conceptual models showing the effects of geology on groundwater quality beyond the river-basin/aquifer boundaries.  

A. Joodavi et al.                                                                                                                                                                                                       

https://doi.org/10.1016/j.ejrh.2021.100885
https://doi.org/10.1016/j.ejrh.2021.100885


Journal of Hydrology: Regional Studies 37 (2021) 100885

14

References 

Addinsoft, 2020. XLSTAT Statistical and Data Analysis Solution. Boston, USA. https://www.xlstat.com. 
Agency for Toxic Substances and Disease Registry (ATSDR), 2012. Toxicological Profile for Chromium. U.S. Department of Health and Human Services, Public Health 

Service, Atlanta, GA.  
Ajami, H., Troch, P., Maddock, T., Meixner, T., Eastoe, C., 2011. Quantifying mountain block recharge by means of catchment-scale storage-discharge relationships. 

Water Resour. Res. 47 https://doi.org/10.1029/2010WR009598. 
Alaminia, Z., Karimpour, M.H., Homam, S.M., 2016. Mineralization and trace element distribution in pyrite using EMPA in exploration drill holes from Cheshmeh 

Zard gold district, Khorasan Razavi Province. Iran. J. Econ. Geol. 7 (2), 203. 
Alidadi, H., Ramezani, A., Davodi, M., Peiravi, R., Paydar, M., Dolatabadi, M., Rafe, S., 2015. Determination of total arsenic in water resources: a case study of Rivash 

in Kashmar City. J. Health Scope 4 (3). https://doi.org/10.17795/jhealthscope-25424. 
Alighardashi, A., Mehrani, M.J., 2017. Survey and zoning of nitrate-contaminated groundwater in Iran. J. Mater. Environ. Sci. 8 (12), 4339–4348. 
Amiri, V., Sohrabi, N., Dadgar, M.A., 2015. Evaluation of groundwater chemistry and its suitability for drinking and agricultural uses in the Lenjanat plain, central 

Iran. Environ. Earth Sci. 74, 6163–6176. https://doi.org/10.1007/s12665-015-4638-6. 
Amiri, V., Kamrani, S., Ahmad, A., et al., 2021a. Groundwater quality evaluation using Shannon information theory and human health risk assessment in Yazd 

province, central plateau of Iran. Environ. Sci. Pollut. Res. 28, 1108–1130. https://doi.org/10.1007/s11356-020-10362-6. 
Amiri, V., Li, P., Bhattacharya, P., et al., 2021b. Mercury pollution in the coastal Urmia aquifer in northwestern Iran: potential sources, mobility, and toxicity. Environ. 

Sci. Pollut. Res. 28, 17546–17562. https://doi.org/10.1007/s11356-020-11865-y. 
Appelo, C., Postma, D., 2005. Geochemistry, Groundwater and Pollution, 2nd edition. Balkema, Rotterdam. https://doi.org/10.1201/9781439833544.  
Ashraf, S., Nazemi, A., AghaKouchak, A., 2021. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 11, 9135. https://doi.org/10.1038/ 

s41598-021-88522-y. 
Ayadi, R., Trabelsi, R., Zouari, K., et al., 2018. Hydrogeological and hydrochemical investigation of groundwater using environmental isotopes (18O, 2H, 3H, 14C) 

and chemical tracers: a case study of the intermediate aquifer, Sfax, southeastern Tunisia. Hydrogeol. J. 26, 983–1007. https://doi.org/10.1007/s10040-017- 
1702-1. 

Baghvand, A., Nasrabadi, T., Nabi Bidhendi, G., Vosoogh, A., Karbassi, A., Mehrdadi, N., 2010. Groundwater quality degradation of an aquifer in Iran central desert. 
Desalination 260, 264–275. 

Barbieri, M., Ricolfi, L., Vitale, S., et al., 2019. Assessment of groundwater quality in the buffer zone of Limpopo National Park, Gaza Province, Southern Mozambique. 
Environ. Sci. Pollut. Res. 26, 62–77. https://doi.org/10.1007/s11356-018-3474-0. 

Bertolo, R., Bourotte, C., Hirata, R., Marcolan, L., Sracek, O., 2011. Geochemistry of natural chromium occurrence in a sandstone aquifer in Bauru Basin, São Paulo 
State, Brazil. Appl. Geochem. 26 (8), 1353–1363. https://doi.org/10.1016/j.apgeochem.2011.05.009. 

Biau, G., Scornet, E., 2016. A random forest guided tour. TEST 25, 197–227. https://doi.org/10.1007/s11749-016-0481-7. 
Breiman, L., 2001. Random forest. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324. 
Bretzler, A., et al., 2017. Groundwater arsenic contamination in Burkina Faso, West Africa: predicting and verifying regions at risk. Sci. Total Environ. https://doi.org/ 

10.1016/j.scitotenv.2017.01.147. 
Chelsea, W.N., Yang, Y.J., Schupp, D., Jun, Y.Sh., 2014. Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral 

precipitation: implications for managed aquifer recharge. Environ. Sci. Technol. 48 (8), 4395–4405. https://doi.org/10.1021/es405119q. 
Coyte, R.M., McKinley, K.L., Jiang, S., Karr, J., Dwyer, G.S., Keyworth, A.J., Davis, C.C., Kondash, A.J., Vengosh, A., 2019. Occurrence and distribution of hexavalent 

chromium in groundwater from North Carolina, USA. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135135. 
Dehbandi, R., Moore, F., Keshavarzi, B., Abbasnejad, A., 2017. Fluoride hydrogeochemistry and bioavailability in groundwater and soil of an endemic fluorosis belt, 

central Iran. Environ. Earth Sci. 76 (4), 177. 
Dehbandi, R., Abbasnejad, A., Karimi, Z., Herath, I., Bundschuh, J., 2019. Hydrogeochemical controls on arsenic mobility in an arid inland basin, Southeast of Iran: 

the role of alkaline conditions and salt water intrusion. Environ. Pollut. 249, 910–922. 
Esmaeili-Vardanjani, M., Rasa, I., Amiri, V., et al., 2015. Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water samples in 

Kadkan aquifer, Khorasan-e-Razavi Province, Iran. Environ. Monit. Assess. 187, 53. https://doi.org/10.1007/s10661-014-4261-0. 
Fakhri, Y., Jafarzadeh, S., Moradi, B., et al., 2015. The non-carcinogenic risk of cadmium in bottled water in different age groups humans: Bandar Abbas City, Iran. 

Mater. Sociomed. 27 (Feb. (1)), 52–55. https://doi.org/10.5455/msm.2014.27.52-55. 
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Abstract: In recent years, in addition to water resources’ quantity, their quality has also received much
attention. In this study, the quality of the urban water distribution network in northwestern Iran was
evaluated using the water quality index (WQI) method. Then, some important trace elements were
investigated, and finally, the health risk assessment was evaluated for both carcinogenic elements
(Ni, Cd, Cr, Pb, and As) and non-carcinogenic elements (Ca, Mg, Na, K, F, NO3, and Cu) using
carcinogenic risk (CR) and hazard quotient (HQ), respectively. In the present study, the WQI was
calculated based on both World Health Organization (WHO) and Iranian drinking water standards.
Comparing the results of these standards revealed that the WQI based on the Iranian standard was
slightly higher. Regarding the calculated WQI for the study region, the status of water quality for
drinking consumption is in the good water quality class (25 < WQI < 50). It was observed that Cu
and Cd have the highest and lowest concentrations in all sampling points, respectively. Hazard Index
(HI) results showed that the non-carcinogenic substances studied had a low risk for both adults and
children (<1.0). However, the CR results showed that Ni, Cd, and As were above the desired level for
both children and adults. The results of this study can be applied for efficient water management
and human health protection programs in the study area.

Keywords: health risk assessment; water quality index; Parsabad city; carcinogenic/non-carcinogenic
risk; trace elements

1. Introduction

Access to clean drinking water is a fundamental human right, regardless of color,
religion, nationality, wealth, or belief. Contaminated drinking water as well as poor san-
itation are associated with the transmission of diseases such as diarrhea, polio, cholera,
and dysentery. Globally, at least two billion people use fecal-contaminated drinking water
sources [1,2]. The increasing need for energy, food, and housing as a result of population
growth, urbanization, and modernization creates great pressure on water resources, espe-
cially water quality, as well as problems of sewage disposal and contamination of surface
waters. Water quality, by definition, is a criterion for assessing the usability of water for
different purposes (drinking, industry, agriculture, etc.) using various biological, physical,
and chemical parameters [3,4].

Parsabad city is considered an agricultural hub in Ardabil province, Iran, that plays
a key role in ensuring food security on a national scale, especially in northwestern Iran.
Using chemical fertilizers and chemical pesticides in this area has caused serious water
quality issues in the study area. As the effects of draining agricultural water on the quality
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of drinking water in Parsabad have not been assessed so far, the results of the present study
would be useful.

The Aras river is the only source of drinking water in Parsabad city. The lack of
accurate identification of dangerous pollutants in this water source and subsequent lack
of control in the drinking water treatment plant of this city can threaten the health of
the inhabitants. Therefore, water quality monitoring through sampling from the water
distribution network in critical points of the city is mandatory. These samples can be used
to evaluate the water quality.

In this study, the water quality index (WQI) method has been used to evaluate the
quality of drinking water in Parsabad city. The goal of this approach was to give a
single value to water quality, which is calculated by considering a list of parameters
and constituents [5]. The WQI method is widely used in assessing the quality of surface
water and groundwater resources and plays a very important role in water resources’
management [6]. In the present study, WQI was calculated in two ways: (a) using the
World Health Organization (WHO) drinking water standard, and (b) using the Iranian
drinking water standard. Then, the results of both were presented and compared.

Considering the importance of the drinking water resources used by local residents
and the prevalence of various gastrointestinal cancers in the region, as one of the possible
consequences of contaminated water consumption, it is necessary to identify different
pollutants in the drinking water source. These results can lead to an accurate water quality
evaluation in Parsabad city and, consequently, achievement of integrated and sustainable
management of water resources in this region. In this study, the health risk assessment
was evaluated from both approaches of carcinogenic and non-carcinogenic health risk
assessment using carcinogenic risk (CR) and hazard quotient (HQ). In assessing health
risk, both ingestion and dermal absorption effects were taken into account. Additionally,
an attempt was made to localize health risk calculations; in other words, the parameters
included in the health risk indices are consistent with the study area. Therefore, instead of
using default values (as in previous studies) in the health risk calculations, we tried to use
values calibrated based on the conditions and criteria of the study area.

2. Materials and Methods
2.1. Study Area and Sampling

Parsabad city, a border city in Ardabil province, northwest Iran, is located 230 km
north of Ardabil city and along the Aras border river, from 39◦12′ N to 39◦42′ N latitude and
47◦10′ E to 48◦21′ E longitude, as shown in Figure 1. Surface water is the most important
source of water in this region. The Aras river is the most important water source for
Parsabad city. As one of the largest rivers in northern Iran, with a length of approximately
1072 km, the Aras river begins from Turkey and then crosses the common border of Iran
with Armenia and Azerbaijan, and finally flows into the Caspian Sea. Parsabad city, with
a population of about 177,601 people, is the second largest city in Ardabil province. This
region is one of the most important agricultural hubs in Iran, with the production of more
than 50 types of crops, which meet about 80% of Iran’s need for corn seeds.

Therefore, due to the existence of large agricultural lands in the entire outskirts of the
city and the use of chemical fertilizers in these lands, there is a possibility of contamination
of the drinking water resources in this city, and therefore, the quality of the drinking water
source in this area should be surveyed.
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Figure 1. Location of urban drinking water sampling points in the study area.

2.2. Water Quality Index Method

Water quality indices have been used in recent years to evaluate the quality of water
consumed by humans in various studies [7–12]. Water quality indices can be considered
water quality models, as a simplified representation of a complex reality [13]. These
indices provide a comprehensive picture of both surface water and groundwater quality
for different purposes (e.g., domestic use and irrigation) [14]. In this study, a common
and basic formula called the water quality index (WQI) was used [15–18]. To calculate the
WQI, various water quality parameters measured in the year 2019, including pH, HCO3,
Cl, SO4, NO3, F, Ca, Mg, K, and Na, were used. It should be noted that the World Health
Organization [19,20] and Iranian standards [21] for drinking purposes were considered to
calculate the WQI. A minimum weight of 1 was assigned to low-significance parameters
in the water quality assessment and a maximum weight of 5 was assigned to parameters
with high importance (Table 1). In general, the WQI is computed using Equations (1)–(4) as
follows:

Wi =
wi

∑n
i=1 wi

(1)

qi =
Ci
Si
×100 (2)

SIi= Wi×qi (3)

WQI =
n

∑
i=1

SIi (4)

where Wi is the relative weight, wi is the weight of each parameter, n is the number
of parameters, qi is the water quality rating, Ci is the measured concentration of each
parameter, Si indicates the drinking water standard for each parameter (mg/L), and SIi is
the sub-index of the i-th parameter.
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Table 1. The weight (wi), relative weight (Wi), and the standard value of each parameter for both
Iranian and WHO standards applied in WQI calculation.

Parameter Unit WHO
Standard

Iranian
Standard Weight (wi)

Relative
Weight (Wi)

pH - 6.5–8.5 6.5–8.5 4 0.1176
HCO3 mg/L 300 - 3 0.0882

Cl mg/L 200–600 250–400 2 0.0588
SO4 mg/L 400 250–400 4 0.1176
NO3 mg/L 50 50 5 0.1471

F mg/L 1.5 - 5 0.1471
Ca mg/L 75–200 300 3 0.0882
Mg mg/L 50–150 30 3 0.0882
Na mg/L 200 200 3 0.0882
K mg/L 10 - 2 0.0588

∑ wi = 34 ∑ Wi= 1

The classification of water quality based on the WQI value is represented in Table 2.
Accordingly, water quality is divided into five general classes, which include excellent
quality, good quality, poor quality, very poor quality, and unsuitable for drinking pur-
poses [22,23].

Table 2. Water quality classification based on WQI values [23,24].

WQI Value Water Quality Status Possible Usage

0–25 Excellent Drinking, irrigation, and industrial
26–50 Good Drinking, irrigation, and industrial
51–75 Poor Irrigation and industrial

76–100 Very poor Irrigation
Above 100 Unsuitable Proper treatment required

2.3. GIS Application

To estimate the value of required parameters in ungauged areas, sampling points
should be used through interpolation. In the present study, geographic information system
(GIS) software was used for the spatial interpolation of various water quality parameters
and for the preparation of distribution maps for each parameter in the study area. The
results of comparing different interpolation methods in GIS show that the kriging method,
particularly regression kriging, has a much better performance than other methods, such
as inverse distance weighting (IDW) and spline [25]. Therefore, in this study, the kriging
method in GIS software was used to prepare spatial distribution maps of water quality
parameters.

2.4. Health Risk Assessment

Trace elements, particularly some heavy metals, are non-degradable, resistant, and
often recycled through biological and physicochemical processes that can pose a significant
threat to human health by damaging the nervous system and other internal organs [26]. In
recent years, many researchers have tried to assess the potential hazard of trace elements
in water to human health using existing methods [27]. In general, human exposure to trace
elements can occur through three main pathways: direct ingestion, inhalation through
the mouth and nose, and dermal absorption. In the water environment, ingestion and
dermal absorption are more important and common [28], and the exposure dose from
the two mentioned pathways can be calculated using Equations (5) and (6), which are
adapted from the risk assessment guidance by the United States Environmental Protection
Agency [29,30].

ADDingestion =
Cw×IR× EF× ED

BW×AT
(5)



Int. J. Environ. Res. Public Health 2021, 18, 5179 5 of 11

ADDdermal =
Cw×SA×KP×ET× EF× ED× 10−3

BW×AT
(6)

where ADDingestion and ADDdermal are the average daily exposure doses through ingestion
and dermal absorption of water (mg/kg/day or µg/kg/day), respectively; Cw is the
average concentration of trace elements in water (mg/L or µg/L); IR is the ingestion rate
(L/day); EF is the exposure frequency (day/year); ED is the exposure duration (year); SA is
the exposed skin area (cm2); KP is the dermal permeability coefficient in water (cm/h)—in
this study, 0.0001 for Pb [26], 0.002 for Cr, 0.001 for As, Cd, Cu, Ca, Mg, Na, K, F, and NO3,
and 0.0002 for Ni [29,31]; ET is the exposure time (h/day); BW is the body weight (kg); and
AT is the averaging time (day). The default values assigned for the above variables are
shown in Table 3 [30,32,33].

Table 3. Default values in the calculation of average daily exposure dose (ADD) through ingestion
and dermal absorption.

Variable Adults Children

IR (L/day) 2 0.64
EF (day/year) 350 350

ED (year) 30 6
BW (kg) 70 15
AT (day) 10,950 2190
SA (cm2) 18,000 6600

ET (h/day) 0.58 1

In this study, in order to characterize carcinogenic and non-carcinogenic risk,
Equations (7)–(9) were used [26]. The potential non-carcinogenic and carcinogenic risks
were evaluated using hazard quotient (HQ) and carcinogenic risk (CR), respectively. The
Hazard Index (HI) represents the total non-carcinogenic risks of trace elements from all
applicable pathways (e.g., ingestion and dermal absorption). If HQ or HI < 1, the non-
carcinogenic health risk is low, but if HQ or HI > 1, non-carcinogenic effects should be
considered. The acceptable range of CR according to the United States Environmental
Protection Agency (USEPA) is 10−6 to 10−4 [30].

Hazard Quotient (HQ) =
ADD
RfD

(7)

Hazard Index (HI) =
n

∑
i=1

(
HQingestion + HQdermal

)
(8)

Carcinogenic Risk (CR) = ADD×CSF (9)

where ADD is the average daily exposure dose through ingestion or dermal absorption
(mg/kg/day or µg/kg/day); RfD is the reference dose (mg/kg/day or µg/kg/day); CSF is
the cancer slope factor of a carcinogen/trace element, (µg/kg/day)−1 or (mg/kg/day)−1.
CSF values were extracted from previous studies [34–40]. In this study, unlike previous
studies in this field, the values of RfDingestion and RfDdermal for the study area have been
localized/specialized. The equations used to calculate RfDingestion and RfDdermal are as
follows:

RfDingestion =
CIS

Wm
×Pingestion (10)

RfDingestion =
CIS

Wm
×Pdermal (11)

where CIS is the Iranian standard value for each parameter, Wm is the mean weight of a
person, Pingestion indicates the total per capita water consumption for cooking and drinking
in Iran, Pdermal shows the total per capita water consumption for bathing, showering,
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washing, and sanitation in Iran. The average Pingestion in Iran is about 11 L/day and the
average Pdermal is about 87.5 L/day [41]. In this study, Wm was considered to be 45 kg.

3. Results and Discussion

The spatial distribution maps of different water quality parameters are shown in
Figure 2. It can be observed that the parameters of K, Mg, Na, HCO3, SO4, Cr, and Cl are
higher mainly in the eastern part of the study area. The values of the other parameters are
distributed generally unbalanced all over the desired area, which can be seen in Figure 2.

Figure 2. Spatial distribution maps of the various hydrochemical parameters in the study area. (a) Fluoride; (b) arsenic; (c)
lead; (d) chromium; (e) cadmium; (f) copper; (g) nickel; (h) pH; (i) potassium; (j) sodium; (k) magnesium; (l) calcium; (m)
nitrate; (n) bicarbonate; (o) sulphate; (p) chloride.

The WQI was calculated to evaluate the suitability of the urban water quality of the
study area for drinking purposes. In this study, the physical and chemical parameters
considered in the WQI calculations are pH, calcium, magnesium, sodium, potassium,
chloride, sulfate, nitrate, bicarbonate, and fluoride. To calculate the WQI, data from 17
sampling points were used. The WQI was examined based on two standards (i.e., WHO
and Iranian standards), the results of which are shown in Figures 3 and 4. The results of the
WQI show that by entering the Iranian standard values in the WQI calculations compared
to those of the WHO, the WQI in the whole study area is higher. However, there is not
much difference between the WQI results when entering the two mentioned standards in
the calculations, and according to the classification in Table 2, the WQI value in the whole
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study region (in both standards) is in the “Good” water quality class (26 < WQI < 50). The
spatial distribution maps of the WQI were prepared using the calculation of the WQI at the
sampling points of the urban water distribution network followed by interpolation using
the kriging method in the GIS environment.

Figure 3. WQI values in the study area using (a) the WHO standard and (b) the Iranian standard.

Figure 4. Water quality index (WQI) values in the sampling points.

As shown in Figure 3, generally, in the eastern half of the study area, the WQI value is
higher than that in the western half, but it is not high enough to change the status of the
water quality according to Table 2. It can be observed that the WQI value using the Iranian
standard in all sampling points is higher than the WQI value using the WHO standard,
according to Figure 4.

The total concentrations of the trace elements in the sampling points ranged from
31.34 to 51.01 µg/L, with a mean value of 39.43 µg/L (Figure 5). It was observed that
copper (Cu) has the highest concentration in all sampling points. After Cu, the next highest
concentrations belong to Cr, As, Pb, and Ni in the study area. In addition, cadmium (Cd)
has the lowest concentration. In the present study, due to the lack of trace elements data in
some sampling points, only nine sampling points’ data were used.
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Figure 5. (a) Total concentrations of the trace elements at the sampling points (µg/L); (b) percentage of various trace
elements out of the total concentrations at each sampling point.

In general, 44% of the total concentration of trace elements belonged to Cu, 16% to Cr,
15% to As, 13% to Pb, 11% to Ni, and 2% to Cd. As shown in Figure 5a, sampling points 4
(51.01 µg/L) and 5 (48.69 µg/L) showed the highest total concentrations of trace elements.
In this study, in order to assess non-carcinogenic and carcinogenic risk, hazard quotient
(HQ) and carcinogenic risk (CR) were used, respectively. The parameters considered in the
non-carcinogenic risk calculations were Ca, Mg, Na, K, F, NO3, and Cu; the parameters
used in the carcinogenic risk assessment included As, Cr, Pb, Ni, and Cd. The results of
HQ and HI and those of CR are shown in Tables 4 and 5, respectively.

Table 4. Reference dose (RfD) (mg/kg/day), average daily exposure dose (ADD) (mg/kg/day), hazard quotient (HQ), and
hazard index (HI) for health risk assessment of non-carcinogenic trace elements (subscript “ing”: ingestion; subscript “der”:
dermal).

RfDing RfDder
Adult Child

ADDing ADDder HQing HQder HI ADDing ADDder HQing HQder HI

Ca 73.33 583.33 1.67 0.0088 0.0229 1.5 × 10−5 0.0229 2.5077 0.0259 0.0342 4.43 × 10−5 0.0342

Mg 7.33 58.33 0.61 0.0032 0.0838 5.5 × 10−5 0.0839 0.9181 0.0095 0.1252 1.62 × 10−4 0.1254

Na 48.88 388.88 2.56 0.0134 0.0524 3.43 × 10−5 0.0524 3.8242 0.0394 0.0782 1.01 × 10−4 0.0783

K 2.44 19.44 0.21 0.0011 0.0870 5.71 × 10−5 0.0871 0.3177 0.0033 0.1300 1.68 × 10−4 0.1301

NO3 12.22 97.22 0.14 0.00078 0.0122 8.02 × 10−6 0.0122 0.3048 0.0023 0.0249 2.37 × 10−5 0.0250

Cu 0.24 1.94 0.00047 2.46 × 10−6 0.0019 1.27 × 10−6 0.0019 0.00070 7.26 ×
10−6 0.0029 3.74 × 10−6 0.0029

F 0.36 2.91 0.0109 5.67 × 10−5 0.0297 1.95 × 10−5 0.0297 0.0162 0.00016 0.0443 5.74 × 10−5 0.0444

Table 5. Cancer slope factor (CSF) (mg/kg/day)−1, average daily exposure dose (ADD) (mg/kg/day), and carcinogenic risk (CR) for
health risk assessment of carcinogenic trace elements (subscript “ing”: ingestion; subscript “der”: dermal).

CSF
Adult Child

ADDing ADDder CRing CRder CRtotal ADDing ADDder CRing CRder CRtotal

Ni 0.84 1.21 × 10−4 1.26 × 10−7 1.02 × 10−4 1.06 × 10−7 1.02 × 10−4 1.81 × 10−4 3.73 × 10−7 1.52 × 10−4 3.13 × 10−7 1.52 × 10−4

Cd 6.3 1.66 × 10−5 8.69 × 10−8 1.05 × 10−4 5.47 × 10−7 1.05 × 10−4 2.48 × 10−5 2.56 × 10−7 1.57 × 10−4 1.61 × 10−6 1.58 × 10−4

Cr 0.5 1.68 × 10−4 1.75 × 10−6 8.42 × 10−5 8.78 × 10−7 8.50 × 10−5 2.51 × 10−4 5.18 × 10−6 1.26 × 10−4 2.59 × 10−6 1.28 × 10−4

Pb 0.0085 1.44 × 10−4 7.54 × 10−8 1.23 × 10−6 6.41×10−10 1.23 × 10−6 2.15 × 10−4 2.22 × 10−7 1.84 × 10−6 1.89 × 10−9 1.84 × 10−6

As 1.5 1.57 × 10−4 8.22 × 10−7 2.36 × 10−4 1.23 × 10−6 2.37 × 10−4 2.35 × 10−4 2.42 × 10−6 3.53 × 10−4 3.63 × 10−6 3.56 × 10−4

The results show that the HI values for all parameters considered in the health risk
assessment of non-carcinogenic trace elements are lower than one, and therefore, there is
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little risk associated with ingestion and dermal absorption in the study area. However,
the results of the health risk assessment of carcinogenic trace elements show that nickel,
cadmium, and arsenic exceeded the acceptable threshold (1.0 × 10−4) for both adults and
children. In addition, chromium is at an acceptable level for adults (8.50 × 10−5), but not
for children (1.28 × 10−4), and lead is within the acceptable limits for both children and
adults.

In this study, it was observed that the general water quality based on the WQI in the
study area was good, while the results of the CR index showed that three out of five trace
elements are above the defined threshold. This does not indicate conflict in the results,
because the nature and purpose of the two mentioned indices are completely different.
The purpose of using the WQI is to achieve a general interpretation of water quality, while
the purpose of the CR index is to examine the amounts of cancerous substances in the
water and whether the amounts of these substances are suitable for children and adults.
This study showed that the use of a simple water quality index (e.g., WQI) cannot be a
criterion for water quality planning and management. Rather, for the correct and efficient
management of water quality, a wide range of quality parameters should be used. In
other words, to judge the water quality of an area accurately, it needs to be evaluated from
different perspectives by using various water quality indices.

4. Conclusions

In this study, the water quality of Parsabad city in Ardabil province, Iran, was evalu-
ated using the water quality index method. To calculate the WQI, the WHO and Iranian
standards were used and then compared. The WQI results were similar for both standards
and showed that the water quality in the whole study area is in the good water quality class.
However, the use of the Iranian standard in the calculation of the WQI led to relatively
higher values, but not high enough to change the status of the water quality. The results
also showed that Cu and Cd have the highest and lowest concentrations at all sampling
points among the studied trace elements, respectively. Then, the health risk assessment of
carcinogenic and non-carcinogenic parameters was performed using two indices, HQ (or
HI) and CR. The HI results showed that the non-carcinogenic substances studied had a low
risk for both adults and children (<1.0). However, the CR results showed that Ni, Cd, and
As were above the desired level for both children and adults. Cr was only in the safe range
for adults, and Pb was in the safe range for both groups (adults and children). It should
be noted that only the amount of CR related to ingestion is high, and the risk associated
with dermal absorption is low for all elements. Therefore, water managers in the study
area should make more efforts in planning and managing water quality in Parsabad city to
reduce the health risk of the mentioned elements. The results of the present study showed
that in order to understand and make accurate judgments about the water quality in an
area, water quality should be considered comprehensively from different perspectives and
using various indices.
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Abstract: Rainwater harvesting (RWH) has been recognized as one of the most reliable and efficient
methods for water supply, especially in arid and semi-arid regions (ASARs) facing freshwater scarcity.
Nevertheless, due to the inherent uncertainty of input data and subjectivity involved in the selection
of influential parameters, the identification of RWH potential areas is a challenging procedure. In
this study, two approaches for locating potential RWH sites were implemented. In the first approach,
a frequently-used method of the multi-criteria decision analysis and geographic information system
(MCDA-GIS) was utilized, while, in the second approach, a novel strategy of integrating the soil and
water assessment tool (SWAT) model as a hydrology model into an MCDA-GIS method was proposed
to evaluate its performance in locating potential RWH sites. The Mashhad Plain Basin (MPB) was
selected as a case study area. The developed potential RWH maps of the two approaches indicated
similar patterns for potential RWH areas; in addition, the correlation coefficient (CC) between the
two obtained maps were relatively high (i.e., CC = 0.914) revealing that integration of SWAT as
a comprehensive hydrologic model does not necessarily result in very different outputs from the
conventional method of MCDA-GIS for RWH evaluation. The overlap of developed maps of the
two approaches indicated that 3394 km2 of the study area, mainly located in the northern parts, was
identified as high-potential RWH areas. The performed sensitivity analysis indicated that rainfall
and slope criteria, with weights of 0.329 and 0.243, respectively, had the greatest sensitivity on the
model in the first approach while in the second approach, the criterion of runoff coefficient (with
weights of 0.358) had the highest impact. Based on results from the identification of the potential
locations for conventional RWH techniques, pond and pan techniques are the most proper options,
covering high-potential areas of RWH more effectively than other techniques over MPB.

Keywords: rainwater harvesting; multi-criteria decision analysis; geospatial techniques; SWAT
model; arid and semi-arid regions

1. Introduction

Freshwater scarcity has become a pivotal issue in sustainable development [1–3],
especially in arid and semi-arid regions (ASARs) where communities are encountering
water scarcity problems, not only in agricultural and industrial sectors, but also for sat-
isfying domestic water demands [4–7]. Most countries in North Africa and the Middle
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East are facing water scarcity and its related consequences [8]. Moreover, various factors,
such as accelerated climate change, population growth, intensive agricultural activities,
and industrialization, as well as continuous pollution of water resources, will exacerbate
freshwater scarcity and shortages in the future [9,10]. Therefore, more studies are needed
in order to focus more specifically on water conservation planning and management, and
the sustainable use of potential water resources [5,8,11].

Rainwater harvesting (RWH) can be considered as one of the most cost-effective and
environmentally-friendly water conservation methods, especially in ASARs, which simulta-
neously address water scarcity issues and alleviates groundwater over-extraction [2,12–14].
From a historical perspective, archeological evidence found in Southwest Asia revealed
that RWH has been practiced since the Neolithic Age (around 10,000 BC to 4500 BC) [11,15].
Moreover, examples of RWH structures were discovered in Tunisia, Greece, China, and
historical Palestine, tracing back thousands of years [2,16]. In general, all schemes for col-
lecting and storing rainwater to supply safe and inexpensive water for different purposes,
such as domestic, industrial, and agricultural purposes are identified as RWHs [17–19].

In developing countries, where domestic water utilization is low, RWH can meet a
large amount of water demand [20,21]. Furthermore, harvested water can be managed and
diverted for other purposes, such as groundwater recharge, downstream flood mitigation,
soil moisture improvement, irrigation, and livestock purposes [1,22,23]. However, identi-
fying RWH potential areas/zones could be challenging, since several criteria need to be
considered, including hydrology, climatic condition, topography, and soil parameters, to
maximize water availability, particularly in ASARs [24,25].

Many methods have been applied to incorporate contributing RWH factors to locate
potential RWH areas. In this regard, the integrated application of multi-criteria decision
analysis (MCDA) and geographic information systems (GIS) has been frequently used for
a wide range of objectives in water resource research, including potential RWH assess-
ment [26–28]. In Saudi Arabia, geospatial and MCDA methods were implemented for
identifying potential areas for some RWH structures [29]. In Egypt, potential RWH and
storage areas were determined using remote sensing and decision support systems [30].
In South Africa, in-field RWH and ex-field RWH suitability maps were developed by
combining ecological, physical, and socio-economic factors [20]. There are other studies
that have been done in which assessment of potential RWHs was conducted through the
incorporation of biophysical factors (e.g., slope, soil type, land use) [31,32].

As a multi-criteria decision-making (MCDM) system, the analytical hierarchy process
(AHP) was introduced by Saaty [33,34]. It is a favorable decision-supporting technique
for solving multiplex problems [35]. Particularly, it has been recognized as the most
applicable decision method for the identification of potential RWH areas, along with
the GIS platform [36]. In the AHP technique, based on the knowledge of experts and
mathematics, decisions are organized and analyzed in a structured procedure. The primary
idea behind AHP is to use hierarchical symbols to represent the components of any issue
and show links between them [35]. Many studies have made extensive use of AHP in order
to identify possible RWH sites [37].

The majority of related studies indicate that the utilization of practical approaches, as
well as the selection of proper/suitable criteria, are the two main factors in the successful
implementation of geospatial and MCDA methods in mapping potential RWH areas [29,38].
In this study, an assessment of potential RWH through the incorporation of biophysical
parameters into MCDA, within a GIS environment, as a frequently used approach, is
conducted. Furthermore, the novel approach of integration of SWAT as a hydrological
model with MCDA and GIS is adopted to evaluate potential RWHs. The integrated
approach of hydrological modeling with MCDA and GIS toward the identification of
potential RWH areas in ASARs has already been addressed in numerous studies [25,39–41].
The primary reason for utilizing a hydrological model is to obtain, either the potential
runoff generation depth and coefficient map, or to incorporate the obtained layer into
MCDA to enhance the RWH site selection criteria. Additionally, studies revealed that the
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combination of SWAT with GIS and MCDA reduces the likelihood of inherent biases in
GIS-based MCDA.

The runoff coefficient is considered as one of the most influential parameters in RWH
assessment, accounting for major contributing factors, such as rainfall, topography, land
use, and soil texture and structure [29,42]. Meanwhile, in most studies, a runoff coefficient
map is generated by utilizing the widely-used method known as the soil conservation
service-curve number (SCS-CN) method [43–45]. The SCS-CN method calculates runoff
depth based on land cover, hydrologic soil group, and antecedent soil moisture content.
While the SCS-CN method is simple, easily applicable, and conceptually stable, it is
constrained by some factors, such as the basin area (less than 8 km2), low infiltration
capacity, and high rainfall depth [44,46].

On the other hand, in ungagged basins, the SWAT model [47] can be considered
as a suitable option for hydrological simulations, particularly in developing countries
lacking rainfall and runoff records [48–50]. Data availability for most parts of the world,
along with other advantageous features, including ease of representation, use of spatially
available data, and capability of result presentation through GIS, increase the potential of
integrating SWAT with the MCDA-GIS approach for the identification of potential RWH
areas [51,52]. Moreover, the SWAT model, which requires a higher number of inputs, is
more comprehensive compared to the SCS-CN, and its application can lead to a more
accurate runoff coefficient map. In addition, the SWAT model includes, not only all factors
used in the SCS-CN method, but also the independent interaction of influential factors,
including infiltration and evaporation in rainfall–runoff modeling, which enables capturing
more variability rather than relying on a single CN as a lumped parameter [48].

This paper evaluates the impact of incorporating a hydrological model on improving
the identification of suitable RWH locations. To enable the evaluation, two approaches,
one including hydrological model and the other one excluding the hydrological model,
are examined. The integrated MCDA-GIS approach was used as the first approach. The
second approach, which incorporates hydrological modeling, was the combination of the
SWAT model with MCDA and GIS. MPB is located in northeast Iran and struggles with
water supply, especially in recent years. A parameters sensitivity analysis was performed
to reduce the subjectivity of parameters selected using expert judgment [48]. In addition,
it identified the most sensitive criteria for locating potential RWH zones in MPB. In the
end, the most applied RWH structures in ASARs were evaluated for MPB to find the best
practices for high-potential areas for RWH.

The inclusive objectives of this research are to: (1) develop and compare the MCDA-
GIS approach with the MCDA-GIS integrated with SWAT approach to identify potential
RWH zones in the MPB; (2) implement sensitivity analyses on the two approaches to
identify the most contributing criteria for potential RWH zone selection; (3) identify the
potential location for three conventional RWH techniques (i.e., ponds and pans, terracing,
and percolation tank) over MPB. The combined approach of the SWAT model, MCDA,
and GIS was evaluated for the first time in ASARs. This paper is categorized as follows:
in Section 2, we describe the study basin and the data and methods used in this study.
Section 3 presents the results of the evaluation. Section 4 describes conclusions and
recommendations for future studies.

2. Materials and Methods
2.1. Study Framework

In this study, a GIS-based MCDA framework has been developed and implemented
at a large basin scale for the identification of potential RWH areas. Figure 1 represents the
conceptual methodological framework of this study. In the present study, two approaches
were developed and compared. In the first approach, five biophysical factors: rainfall, slope,
land use, soil type, and soil depth, were incorporated into an MCDA for the evaluation
of potential RWH zones. While in the second approach, four factors: slope, rainfall, and
soil type, along with the runoff coefficient map derived from the SWAT model were used.
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The selected criteria in both approaches were weighted using AHP and then normalized
and reclassified using GIS techniques. Afterward, different sub-criteria were scored and
rasterized. Then, weighted linear combination (WLC) was used in the GIS environment to
develop the final potential RWH maps.

Figure 1. Conceptual methodology framework used in this research.

2.2. Study Area and Data Collection

The methodology was applied to MPB, located in the northeast of Iran, with an area
of 9762 km2, between 35◦59′ N to 37◦03′ N latitude and 60◦06′ to 58◦22′ E longitude
(Figure 2). The climate of the study area is semi-arid to arid, and the average monthly
temperature ranges from 11.6 to 26.7 ◦C [48]. A review of 19 rain gauge stations during
30 years (1979–2010) indicated an annual average rainfall of 303 mm, which varies from
166 to 486 mm [53]. In general, a V-shaped monthly rainfall pattern is observed. January,
February, and March are the wettest months, while the rainfall trend decreases until July,
the driest month of the year, and increases again until December. Climate change has
increased the temperature trend, while no considerable changes in rainfall patterns are
observed [54]. The annual average evapotranspiration ranges from 236 to 310 mm [55]. In
addition, the mean elevation of the basin is 1487 m above sea level (ASL), which varies
from 856 to 3247 m ASL; and the average land slope in the study area is 16.2%. From the
geological point of view, the main constituents of the study area are ultramafic, granitic,
and metamorphic rocks. In addition, the northern parts of the study area are sedimentary
zones, mainly comprised of limestone, conglomerate, dolomite, and gypsiferous marls,
and the higher parts of the MPB include discontinuous loess deposits [56].



Water 2021, 13, 1935 5 of 21

Figure 2. Mashhad Plain Basin in Northeastern Iran.

2.3. Data Collection

The available data were obtained from various governmental organizations and other
direct sources, such as field surveys and RS (i.e., satellite imagery) data; data collec-
tion focused on the main influential factors to identify potential RWH areas, including
maps of rainfall, soil, and land use. Furthermore, data processing and an assortment
of supporting techniques were conducted to perform the data analysis. All the gener-
ated/available data (GIS layers) were geo-referenced to the MPB geographical coordinate
system (WGS_1984_UTM_ Zone_40N).

2.4. Data Processing and Analysis
2.4.1. Criteria Map Generation

Slope map generation was performed using the ASTER DEM surface and the 3D
Analyst tool in the ArcGIS environment. The hydrological soil map was reclassified into
three soil groups, according to the soil texture and characteristics (infiltration and soil
grading). The land use data were merely descriptive and were not readily available to be
incorporated directly into the model; the geological field mapping along with the satellite
images were used for better land-use data preparation.

The SWAT model was used due to model compatibility for regions lacking proper
available data. The SWAT model incorporates various contributing factors in the runoff
process and lessens the inherent biases involved in the MCDA-GIS approach [48].

ASTER DEM was utilized in the SWAT model to delineate basin, sub-basins, and
hydrological response units (HRUs). Then, weather data for the period of 1981 to 2010
(i.e., CFSR (climate forecast system reanalysis), daily rainfall, minimum and maximum
temperature collected from the GSMaP (global satellite mapping of precipitation)) was
imported to build the basin model and enable hydrological simulation. Calibration and
validation processes were neglected for two main reasons; the first reason is the inadequacy
of observed runoff data to examine the model simulations and the comparative and/or
relative survey of the results because in the comparative environment, calibration and
validation processes are obviously not necessary. Therefore, the non-calibrated model does
not have any impact on the relative runoff coefficient and the optimal locations for RWH.
After calculating the annual average rainfall for each station, it was interpolated using the
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kriging method in ArcGIS, which was later averaged over each sub-basin. With the mean
runoff depth obtained from the SWAT model, and the average rainfall over each sub-basin,
a mean runoff coefficient was determined for all 43 sub-basins within the study area.

After preparing the selected criteria and assigning normalized scores to each sub-
criterion, the final map for each criterion was generated and classified into three classes.
For all the criteria, except soil depth, soil type, and land use, the classification method
of Jenks natural breaks was applied [57,58]. The Jenks natural breaks method, which is
considered a conventional method of classification, has been frequently used by previous
studies [30,59,60]. Natural break classes are based on natural groupings inherent in the data.
Class breaks are identified such that similar values are grouped and the differences between
the mean values of classes maximized [57]. It should be noted that the classification of soil
depth, soil type, and land use was done based on the literature and expert judgment.

2.4.2. Comparison of Approaches

To compare the potential RWH maps resulting from the two approaches, the corre-
lation coefficient (CC) between the two maps was calculated using the band collection
statistics tool in ArcGIS [61]. The correlation between two grid datasets was calculated
as the covariance of two grids divided by-product of standard deviations of two grids,
as follows:

CC =
Covij

σiσj
(1)

where σi and σj are the standard deviation of grid i and j, which here can refer to the
resulting potential RWH maps of approach 1 and 2, respectively; Covij is the covariance
between all pairs of cells of the two grids, calculated as follows:

Covij =
∑N

k=1(V ik − µi)(V jk − µj

)
N− 1

(2)

where V is the cell value, µ is the mean value of each grid, N is the total number of cells in
each grid, and k denotes a particular cell in the grid. The CC ranges between −1 to 1, such
that CC equal to 1 and −1 showing a fully positive and negative correlation between two
grids, respectively.

2.5. Multi-Criteria Decision Analysis
2.5.1. Analytic Hierarchy Process (AHP)

To produce the potential RWH map, AHP was selected as an MCDA technique [62].
AHP has been widely used due to its simple interpretation and implementation, as well
as the consistency of its results [59,63–65]. However, the main challenge with the MCDA
method is how to select the criteria and relative weights, considering the judgment of
experts. Therefore, through the use of expert knowledge and extensive review of RWH arti-
cles, effective criteria were selected and proper weights and scores were assigned [16,25,66].
Each of the mentioned criteria had different feature classes; the appropriate score for each
feature class of the layers was determined and then normalized. Proper scores were as-
signed to selected thematic layers on a scale of 1–9, proposed by Saaty [67]. A pair-wise
comparison of the assigned weights matrices was made using the Saaty AHP approach
to determining the weights of the criteria. Subsequently, these desired priority vectors
were computed using the eigenvector technique [62] and finally the assigned weights were
tested for consistency by computing the consistency ratio as follows [67]:

Consistency Ratio (CR) = (λmax − n)/((n − 1) × RI) (3)

where λmax is the principal eigenvalue computed by the eigenvector technique, n is the
number of criteria, and RI denotes random index. More details about the eigenvector
technique are provided by Saaty (1980) [67].
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It is worth mentioning that the AHP method requires independence between each
criterion; while the parameters used in approach 2 (i.e., runoff coefficient, soil type, and
slope) are interrelated. Nevertheless, the aims of selecting and including criteria into
AHP are two-fold. The selected area for RWH should have, first, the potential of runoff
generation and, second, the potential of runoff harvesting. Two areas having the same
runoff coefficient and the same amount of rainfall do not necessarily provide the same
chance of RWH; the area with a gentler slope and less pervious soil provides a better
opportunity for RWH. The runoff coefficient is a key parameter in RWH in the second
approach that shows the percent of water that can be available for RWH and has the highest
weight compared to the other factors. Rainfall, slope, and soil type are, accordingly, other
parameters that determine the feasibility of harvesting rainwater, having lower effective
weights in the second approach, respectively.

2.5.2. Rainwater Harvesting Potential Index (RWHPI)

In this study, for each of the two approaches mentioned in previous sections, different
criteria were used, as listed in Table 1. These criteria were selected based on their proven
effectiveness in locating potential RWH zones in ASARs, as documented in a literature
review [16,25]. All thematic layers, along with their normalized weights were integrated
using ArcGIS software to map the potential RWH zones for both approaches. The total
normalized weights of different features were overlaid in the integrated raster layer using
the weighted linear combination (WLC) as Equations (4) and (5), which were used for the
first and second approaches, respectively.

RWHPI = (R)c(R)s+(S)c(S)s+(ST)c(ST)s+(SD)c(SD)s+(LU)c(LU)s (4)

RWHPI = (R)c(R)s+(RC)c(RC)s+(S)c(S)s+(ST)c(ST)s (5)

where RWHPI is rainwater harvesting potential index, subscript c shows the normalized
weight of each criterion, and subscript s denotes the normalized score of a feature class
of each criterion. RWHPI is a dimensionless indicator that is useful for finding the high-
potential RWH zones within the study area.

Table 1. The criteria used in RWHPI.

Thematic Layer Abbreviation 1st Approach 2nd Approach

Runoff Coefficient RC -
√

Soil Type ST
√ √

Slope S
√ √

Rainfall R
√ √

Land Use LU
√

-
Soil Depth SD

√
-

2.6. Sensitivity Analysis

It is very important to check the reliability and robustness of the methodology used in
this study and the results should be validated to evaluate the impact and importance of
each of the factors affecting the model. Sensitivity analysis was performed to obtain insights
into the dependence of model outputs on certain model variables [68]. These analyses,
in addition to determining the impact of each variable on the RWH analysis, reduce the
subjective aspects of the various criteria. The most sensitive identified criteria are ranked
as the first priority for future analyses, to ensure more accurate measurements due to their
high weights in the analysis. Single parameter analysis introduced by Napolitano et al. [69]
was used to estimate the contamination vulnerability of aquifers in several studies [70,71].
In addition, single parameter sensitivity analysis manages the over-parameterization that
commonly occurs in hydrological modeling [48,49,72]. The sensitivity analysis method
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replaces the initial criteria weight used for the AHP with “effective weights” calculated
using Equation (6):

Wi =
n

∑
j=1

Fi × Sij

Vj
× 100/n (6)

where Wi is the effective weight of each factor, Fi indicates the initial weight of criterion, Sij
is the value score of ith criterion in jth pixel of the raster map, and Vj is the value of the
applied index (i.e., RWHPI) and n is the number of pixels in the raster map of the case
study. The sensitivity analysis was applied to both approaches.

After performing the sensitivity analysis, the effective weights were applied to obtain
the modified RWHPI. The modified RWHPI assumes the same class scoring and parameters
as the base RWHPI but using effective weight values obtained from Equation (6), (i.e., W).
The modified RWHPI is obtained considering the effective weight of each criterion rather
than the initial assigned weight, which reduces the initial subjectivity of the assigned
weights selected by using expert judgment.

2.7. Identification of Suitable Sites for Different RWH Techniques

After identifying potential RWH areas and also discarding unsuitable areas for RWH,
different RWH techniques for the potential areas were evaluated. For this purpose, the
most common techniques used in ASARs for agricultural and domestic applications were
considered, including percolation tanks, terracing, and pond and pan [25]. The suitability
map for each RWH technique was generated based on common local practice criteria,
as well as a comprehensive review of previous studies. The most common parameters
applied for the development, planning, and implementation of such techniques are listed
in Table 2 [25]. In the following sections, some explanations about several RWH techniques
are provided.

Table 2. The common techniques and criteria used for RWH site selection in ASARs.

RWH Techniques Rainfall (mm) Slope% Soil Type Land Use/Cover Reference

Pond and Pan >200 <5 Silty loam, sandy clay
loam

Planting forests, low-density pasture, semi-dense
pasture, woodland and scrubland, high-density

pasture, irrigated cropland and pasture, dry farming
[24,31,73–76]

Terracing 200–1000 5–30 Clay loam, sandy
clay, sandy loam

Semi-dense forest, low-density pasture, woodland and
scrubland, planting forests, dry farming, semi-dense

pasture, rock protrusions, high-density pasture
[37,77,78]

Percolation tank <1000 <10 Clay loam, silt loam
Semi-dense pasture, woodland and scrubland,

low-density pasture, rock protrusions, high-density
pasture, dry farming

[74,76,79]

3. Results
3.1. Selected Criteria in MCDA

In the present study, two approaches for locating potential RWH zones were imple-
mented and compared to examine the effect of incorporating SWAT as a hydrological model
to the frequently used approach of MCDA-GIS [24,25,31,75]. In the calculation of RWHPI
and generating RWH potential maps, the highest harvesting possibilities of rainwater, as
well as runoff generation, were considered. The RWHPI for the first and second approaches
were calculated using Equations (4) and (5), respectively. To guarantee the consistency
of the analyses, the procedure of weighting thematic layers in AHP was set such that the
consistency ratio for all of the obtained thematic layers would be less than the limit of
0.10 [67]. The selected RWH criteria, as well as the assigned corresponding weights, are
shown in Table 3. Their selection was based on expert knowledge and extensive literature
reviews over several RWH publications for ASARs.
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Table 3. Weights of the thematic layers (criteria) and their features (sub-criteria).

Thematic
Layer Feature Class Assigned

Score
Layers Relative Weights

Approach 1 Approach 2

Runoff
Coefficient

0.031–0.041 2

- 0.387
0.042–0.058 4
0.059–0.087 6
0.088–0.12 8
0.13–0.18 9

Rainfall
(mm/year)

161–202 2

0.380 0.275
203–272 4
273–331 6
332–395 8
396–466 9

Slope (%)

0–5 9

0.234 0.198
5–10 8
10–15 7
15–30 5
>30 3

Soil Type
Silt loam or loam 5

0.179 0.140Sandy clay loam 7
Clay loam or clay 9

Soil depth

Water bodies 9

0.107 -
Very shallow 8

Shallow 7
Relatively deep 5

Deep 3

Land use

Semi-dense forest 2

0.100 -

Woodland and scrubland 3
Planting forests 4

Scatter forest 5
Dry farming, irrigated cropland 6

High density pasture 7
Low and semi-dense pasture 8

Urban and built-up land, water bodies 9

Most of the selected biophysical criteria in this study have been widely used in
previous studies in ASARs. Adham et al. [25] showed that, in 48 studies regarding the
potential RWH evaluation through GIS, land cover/use (75% of studies), soil type (75%
of studies), rainfall (56% of studies), and slope (83% of studies), were used as influential
criteria. The rainfall data are one of the necessities/prerequisites to identify potential RWH
zones and technically more rainfall in an area means a higher-potential RWH [80]. In
ASARs, in terms of the practical effectiveness of RWH techniques, a minimum available
rainfall of 200 mm/year was recommended [81,82]. Daily global rainfall CFSR data for
30 years (1981 to 2010) were used and mean annual rainfall data over the sub-basins
were obtained. According to the rainfall map shown in Figure 3b, the annual rainfall
ranges from 161 to 466 mm, and over 60% of rainfall occurs during December, February,
March, April, and May. The northern sub-basins receive a higher amount of rainfall (about
400 mm/year), while less rainfall (around 161–202 mm/year) is received in the southern
sub-basins. The rainfall received in the middle parts of the study area ranges from around
203 to 395 mm/year. In this study, direct consideration of evaporation was ignored due
to a lack of data and simplification. However, in the second approach, evaporation was
indirectly considered. This is because of the fact that the runoff coefficient map utilized as
a biophysical criterion was obtained from a SWAT model, which considers evaporation in
the process.
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Figure 3. Layers and corresponding feature classes. (a) Runoff coefficient, (b) rainfall, (c) slope,
(d) soil type, (e) soil depth, and (f) land use.

The slope is another criterion for the mapping of potential RWH zones. As the
percentage of slope increases, the runoff generation increases, while the harvesting op-
portunity of rainwater for most RWH techniques decreases—this results in less suitability
for RWH [29,77]. Hilly areas respond to rainfall events in the way that a high amount of
rainwater rapidly runs off and becomes unavailable, even if the mean amount of rainfall
is fairly noticeable. That is the case, particularly in the peak domestic and agricultural
demand periods [77]. On the other hand, milder areas retain water for a longer time
and facilitate groundwater recharge. Moreover, a large amount of earthwork along with
implementing erosion control measures are required for constructing RWH systems on
hilly areas, which undermines the economic aspect of building RWH systems in areas with
a high degree of slope [31,42]. Typically, areas with higher slopes (>5%) are more prone to
erosion due to the uneven distribution of runoff over the area [83]. A slope map is shown
in Figure 3c. All around the study area, except for the southeastern border, is surrounded
by mountains (high elevation areas), while central portions of the study area are located
at lower elevations. The slope ranges between 0 and 1% in almost 37% of the study area
and the slope of 9.1% of the study area is in the range of 1 to 3%. Steep areas (>15%) cover
4.1% of the basin. The rest of the desired region is divided into three almost equal portions
(around 16% of the study area) that have slope ranges of 3–5%, 5–10%, and 10–15%.

Another important criterion for RWH planning and selecting optimal locations for
implementing RWH techniques is the soil type [84,85]. Soil characteristics determine the
infiltration capacity rate, water holding capacity, and runoff generation potential [78,85–87].
The textural features of soil are determined by the percentage of sand, silt, and clay.
Naturally, a higher sand portion in the soil implies a higher infiltration rate, lower water
storage capacity, and lower runoff generation potential, while the reverse of these properties
is the case when the soil consists of a higher clay percentage [78,86,88]. A soil map is shown
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in Figure 3d. Sandy clay loam with low infiltration rates forms about 25.4% of the soil in
the study area; besides, silt loam, or loam with a moderate infiltration rate forms about
49.3% of the study area. The rest of the basin (almost 25.3%) consists of clay/clay loam
with a low infiltration capacity rate and consequently higher runoff potential. There are
several factors (e.g., vegetation coverage, soil texture) involved in the amount of runoff that
is generated from rainfall events which are reflected in a runoff coefficient [87,89]. Since
most of the influential factors in runoff generation are considered in SWAT’s structure, the
resultant runoff coefficient map reasonably represents case study characteristics.

The runoff coefficient map (Figure 3a) indicates the average runoff coefficient of each
sub-basin over 30 years (1981–2010). The runoff coefficient map values range from 0.03 to
0.18. The northern parts indicate higher values while lower runoff coefficients are shown
in the southern sub-basins. Typically, a higher runoff coefficient denotes a higher runoff
potential; nevertheless, it should be mentioned that successful RWH is not exclusively the
function of high runoff potential, but the potential of harvesting the generated runoff should
also be considered, which itself is a function of other criteria to ascertain potential RWH.

Land use characteristics dictate the quantitative and qualitative relations between
captured rainfall by the basin, groundwater recharge, evapotranspiration loss, and the
remaining water running off a basin [88]. Infiltration is lower in urban and pasture-covered
areas, which results in higher overland flow. While, as the vegetation coverage becomes
intense, water abstraction, interception, and infiltration are increased and its consequences
in less generated runoff [40,48,84]. The land use map (Figure 3f) shows that dominated
land covers of low-density pasture, semi-dense pasture, irrigated agriculture, and dry
farming constitute 23%, 24%, 19%, and 25% of the study area, respectively. It is worth
mentioning that due to the incorporation of the runoff coefficient map, the land use layer
was not directly included in the second approach. This is because the runoff coefficient map
is highly dependent on land use and SWAT requires a land-use map as an input. Thus, the
impact of different land uses on RWH is intrinsically reflected in a runoff coefficient map.

The classification of the soil depth map (Figure 3e) based on FAO suggestions (Food
and Agriculture Organization of the United Nations) [90] includes very shallow (<30 cm),
shallow (30–50 cm), moderately deep (50–100 cm), and deep (100–150 cm). The soil depth
map (Figure 3e) indicates that central portions of the study area are mainly covered by
deep soils (20.9%), while outer areas are mostly shallow soils (46%). The rest of the basin
(27.6%) has relatively deep soil. Areas with shallow soils are potentially more suitable for
RWH than areas with deep soils (with some exceptions, such as terrace (earthwork)) due to
lower permeability and higher water generation [91]. In other words, a runoff coefficient is
higher in areas with a shallower soil depth. The soil depth layer was not directly included
in the second approach due to the high dependency of runoff coefficient on soil depth. A
runoff coefficient is interrelated to the soil depth and assumed as its proper representative
in the second approach.

3.2. Rainwater Harvesting Potential Maps

RWH Potential maps were produced by integrating the selected layers (Table 3) of
each approach using the WLC technique in ArcGIS Spatial Analyst Tools. Afterward,
RWHPI was computed using Equations (4) and (5) for the first and second approaches,
respectively, to generate the potential RWH maps, shown in Figure 4a,b. The output maps
of both approaches were classified into three categories of “low”, “moderate”, and “high”
RWH potential. The same classification method of Jenks natural breaks was implemented
to classify both potential RWH maps to facilitate the comparison of the two approaches.
The RWHPI for both approaches ranged in almost the same intervals for all RWH potential
classes, as shown in Figure 4a,b. The low classes ranged in 0.083–0.181 and 0.102–0.193,
moderate classes ranged in 0.182–0.253 and 0.194–0.242, and the interval of high classes
were 0.254–0.352 and 0.243–0.337 for the first and second approaches, respectively. Accord-
ing to Figure 4a,b, although there are some discrepancies between the two developed maps,
the general patterns of both maps are almost identical. The areas with high potential RWH
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are located in the northern parts of the case study area, while a lesser potential RWH was
predicted by both approaches for the southern parts. The northwestern and central parts
of the study area had moderate RWH potential.

Figure 4. RWH potential map of the study area for the first and second approaches and for the overlap of the two approaches.

Apart from the almost identical potential RWH area distributions of both approaches
over the case study area, the coverage areas of each class are also analogous (Table 4).
Moreover, the overlapping map of both approaches is shown in Figure 4c, where navy blue
color shows a high overlap and the white-colored areas indicate no overlap. The overlap
percentage of each RWH potential class is also provided in Table 4.

Table 4. Three classes of potential RWH using two approaches.

RWH Potential Classes
Approach 1 Approach 2 Percentage of Overlap of the

Two Approaches (%)The Portion of Study Area (%) The Portion of Study Area (%)

Low 29.9 34 32.9
Moderate 24.3 30.5 19.1

High 45.8 35.5 48.0

According to Table 4, the low potential RWH class comprises almost 30% of the
study area in both approaches, such that 80.4% of the area is in common between the two
developed maps. This fact shows the conformity of the two approaches in discriminating
areas with less potential for RWH. Areas with high RWH potential cover 45.8% and 35.5%
of the study area in the first and second approaches, respectively. While there is a noticeable
difference in the percentages of the coverage area, 76.5% of the high potential RWH areas
are overlapped in both maps. These areas that encompass 3394 km2 (Figure 4c) are mainly



Water 2021, 13, 1935 13 of 21

located in the northern part of the study area and are considered the most promising
sites for RWH since they are obtained by both approaches. In addition, high potential
overlap areas can be listed as top priority zones for RWH interventions by decision-
makers. The models’ agreement on their high potential RWH increases their credibility.
The moderate class comprises almost the same portions (24.3% and 30.5% for the first
and second approach, respectively) of the basin; nevertheless, there is less agreement
between the two models in this class and the overlapping coverage is 57.4%. The moderate
class in the first approach is located in a more concentrated way, while there are more
scatterings in the second approach. To more thoroughly compare implemented approaches,
the correlation between the two obtained potential RWH maps was evaluated utilizing
the Spearman method. The calculated correlation coefficient is 0.914, which indicates that
the two maps are strongly correlated, and both approaches yield almost the same results.
Based on the high correlation coefficient, percentages of overlapped area for each of the
classes (Table 4), and the general pattern of the two potential RWH maps (Figure 4a,b), the
following conclusion is obtained.

3.3. Sensitivity Analysis

Criteria weights and sub-criteria scores have a vital impact on the evaluation of
the obtained results. Given that their determination is generally made through expert
interpretation, the selection of potential RWH zones can be sensitive to weight changes
in criteria-related decision weights [92,93]. For example, considering a feature in which
the distribution of feature classes is rather homogeneous, this would have a fairly equal
influence on the whole study area. Solving this problem requires sensitivity analysis in
such a way that the weight values constantly change to check the amount of change in
the final results. At first, as an initial weight, the runoff coefficient was considered as the
dominant parameter. The next considered significant parameters included rainfall, slope,
soil type, soil depth, and land use, respectively.

The results of the sensitivity analyses (Figure 5) showed that the least sensitive factor
in approach 1 was land use (with the mean value of 0.075), which was expected due
to the weight factors assigned (Table 3). Additionally, in approach 2, the least sensitive
parameter was slope (with the mean value of 0.207). Performed comparison of the RWHI
map produced from the sensitivity analyses of approach 1 and approach 2 indicates that
these two approaches are well comparable in general, therefore it would be rational to
conclude that the assumed weight was fairly suitable and the results are reliable as both
weights and final results were rather similar.

The result of sensitivity analysis for both approaches revealed that the effective in-
fluence of the assumed weights for rainfall and runoff coefficient layers would be less in
reality (Table 5). This can be attributed to the rather homogeneous distribution of rainfall
and runoff coefficient layers and the fact that they were averaged for each sub-basin (see
Figure 3a,b). Revising the initial weight of criteria with the effective weight obtained
from sensitivity analysis, Equation (6), slightly increased the overall overlap of the two
approaches with a previous study. The overlap of approaches 1 and 2 after sensitivity
analysis were, thus, 47.9 and 37.7%, respectively. To be more specific, using sensitivity
analysis decreases the sensitivity of features by minimizing the difference between the
estimated weights and their real influence. Examining the results of the sensitivity analysis
of approach 1, it is observed that the parameters of rainfall and slope, both had the greatest
impact on the model, in other words, have the highest sensitivity. In approach 2, the runoff
coefficient parameter had the highest sensitivity. According to the RWH overlap map of
the two approaches, about 50% of the study area has a high potential RWH, about 28%
moderate, and about 22% low potential RWH (Table 6). Generally, the northern half of MPB
has a high potential RWH; however, the southern half of the study area has a moderate to
low potential RWH.
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Figure 5. Potential RWH map of the study area for the first and second approaches after sensitivity analyses.

Table 5. Statistics of the effective weights from sensitivity analysis.

Approach 1

Parameter Initial Weight (W), (AHP) Min (Wi) Max (Wi) Mean (µ) SD (σ)

Rainfall 0.380 0.105 0.639 0.329 0.126
Slope 0.234 0.030 0.475 0.243 0.126

Soil Type 0.179 0.134 0.565 0.265 0.083
Soil Depth 0.107 0.033 0.261 0.088 0.035
Land Use 0.100 0.014 0.197 0.075 0.023

Approach 2

Parameter Initial Weight (W), (AHP) Min (Wi) Max (Wi) Mean (µ) SD (σ)

Runoff
Coefficient 0.387 0.133 0.580 0.358 0.100

Rainfall 0.275 0.071 0.441 0.226 0.073
Slope 0.198 0.023 0.473 0.207 0.119

Soil Type 0.140 0.099 0.555 0.209 0.087

Table 6. Three classes of potential RWH in the two approaches after sensitivity analysis.

RWH Potential Classes
Approach 1 Approach 2 Percentage of Overlap of the

Two Approaches (%)The Portion of Study Area (%) The Portion of Study Area (%)

Low 21.9 30.3 22.1
Moderate 28.4 28.2 27.8

High 39.7 41.4 50.1
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In conclusion, using CFSR data does not result in an identical output as using observed
data due to the high sensitivity of locating potential RWH areas according to rainfall data;
however, the global availability of CFSR data enables RWH analysis all over the world.
Thus, more attention should be paid to data quality and also to the fact that the high
uncertainty associated with them should not be neglected. In the next step/section, after
identifying the high-potential RWH areas, the feasibility of different RWH structures in the
study area is assessed.

3.4. Potential Zones for RWH Techniques

After identifying the most suitable areas for RWH, various RWH techniques were
determined. As mentioned earlier, the most common RWH techniques are ponds and
pans, terracing, and percolation tanks. Figure 6 shows the suitable locations for various
RWH techniques from the perspective of both approaches 1 and 2. The whole study
area is divided into low, medium, high, and unsuitable classes in terms of suitability for
different techniques. The suitability map of the study area from the perspective of different
techniques was prepared using criteria related to each technique for both approaches 1 and
2 in the ArcGIS environment, the results of which are according to Table 7. As presented in
Table 7, the most suitable areas among the various techniques studied are related to ponds
and pans, in which the total area with low, moderate, and high potential for this type of
technique is about 44% (or about 4295 km2). After ponds and pans, the most suitable areas,
respectively, are tanks with about 30% (about 2928 km2) and terracing with about 20%
(about 1952 km2).

Figure 6. Suitable areas for various RWH techniques, as obtained from the two approaches.
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Table 7. The total potential area of the various RWH techniques in the study area as percentages.

RWH Techniques Class
Approach 1 Approach 2

Without Sensitivity
Analysis

With Sensitivity
Analysis

Without Sensitivity
Analysis

With Sensitivity
Analysis

Terracing

Poor 5.7 2.2 6.8 6.1
Moderate 3.3 5.6 1.9 2.2
Very Good 11.1 12.3 11.3 11.8

Total 20.0 20.0 20.0 20.0

Percolation Tank

Poor 8.9 7.4 9.8 9.5
Moderate 11.8 12.8 7.1 10.4
Very Good 9.2 9.7 13.1 10.0

Total 29.9 29.9 29.9 29.9

Pond and Pan

Poor 10.3 4.0 10.7 10.9
Moderate 15.3 19.3 9.1 11.4
Very Good 18.2 20.5 24.0 21.4

Total 43.7 43.7 43.7 43.7

3.5. Potential of RWH in MBP Water Management

MPB has been struggling with water scarcity and shortage problems for decades.
Currently, surface water supplies about 22% of the water demand in Khorasan Razavi
Province, encompassing the MPB, and the rest is provided through groundwater resources.
Of the total capacity of the large dams in Khorasan Razavi Province (1549 million cubic
meters, MCM), most dams operate at only about 34% of their total capacity. On average,
about 6404 MCM are extracted annually from groundwater sources, about 85% of which
is exploited through wells, about 9% through qanats, and 6% through springs. However,
groundwater recharge potential is only 5300 MCM, which indicates an average annual
groundwater shortage of 1100 MCM. Groundwater over-extraction and the low operating
capacity of existing dams have eventuated the province’s water crisis. Mashhad, as the
center of the province, with an average annual water consumption (industrial, agricultural
and domestic water consumption) of 26.46 MCM, has the highest over-exploitation of
renewable water in the province (Khorasan Razavi Regional Water Authority [55]).

Nevertheless, based on the demonstrated results (Figure 5), the study area has a
high RWH potential. An annual rainfall of 2946 MCM falls on the whole study area of
which 1505 and 1569 MCM are on the high potential RWH class, and 952 and 780 MCM is
received by the moderate class in the first and second approaches, respectively. Moreover,
the rainfall received by the overlap of high potential RWH areas in both approaches is
1436 MCM. The resulting surface runoff within a catchment is one of the decent water
resources, once it is managed efficiently, and can be utilized to supply a high portion
of water (domestic and agricultural) demands. The results indicate the high potential
of the case study area in harvesting rainwater and alleviating the existing water crisis.
Finding and implementing efficient water management strategies at a basin/sub-basin
scale is an urgent requirement of the MBP. Water shortages will continue to be a major
problem in the study area unless efforts are made to achieve sustainable and efficient use
of potential RWHs.

4. Conclusions

RWHs are recognized as an applicable and favorable method of water supply, as it con-
serves existing water resources, while contributes to water scarcity alleviation, particularly
in ASARs. Nevertheless, identification of potential RWH areas is challenging due to the
inherent uncertainty of input data and the subjectivity involved in selection of influential
parameters. In the present study, two approaches for locating potential RWH areas were
implemented. In the first approach, a frequently used MCDA-GIS method was utilized,
while in the second approach, the SWAT model was included in the analysis in order to
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examine the effect of incorporating SWAT as a hydrological model into an MCDA-GIS
method for RWH assessment. In this study, the SWAT model, as a more comprehensive hy-
drological model compared to the SCS curve number method was employed for generating
the runoff coefficient map.

The resultant potential RWH maps of the two approaches indicated a similar pattern
for potential RWH areas. In both potential RWH maps, the northern parts of the study
area were categorized as the high potential areas, whereas less harvesting potential of
rainwater was demonstrated for the southern areas of the case study. In addition, the
overlap of the resultant maps of the two approaches indicated that 3394 km2 of the study
area is considered a high-potential RWH area. These areas, mainly located in the northern
parts of the study area receiving an average annual rainfall of 1366 MCM. Meanwhile,
the total capacity of the large dams of Khorasan Razavi Province, where the study area is
located, is 1549 MCM. Accordingly, there is high RWH potential in the study area that, if be
managed and utilized efficiently, could contribute to water supply and ensure long-term
water security.

The high value of the calculated correlation coefficient between the two resultant
potential RWH maps (i.e., CC = 0.914), along with provided results, demonstrated that
both approaches yield almost identical results. Therefore, it can be stated that the inclusion
of SWAT as a hydrological model under the described methodology does not necessarily
result in different outputs from conventional MCDA-GIS for RWH evaluation purposes,
whereas it demands a higher degree of effort to run the hydrological models. On the other
hand, the inclusion of hydrological models can be considered as an efficient strategy to
reduce uncertainties embedded in RWH assessment using MCDA. Additionally, there
would be less uncertainty associated with the overlapping high-potential RWH areas, since
these areas are suggested by a combination of the two approaches, rather than a single
conventional MCDA-GIS method.

Moreover, the results of the conducted sensitivity analyses indicate that the rainfall
and slope criteria (with weights of 0.329 and 0.243, respectively) have the highest impact
on the model in approach 1 whereas the criterion of runoff coefficient (with weights of
0.358) has the highest sensitivity in approach 2. The most-sensitive identified criteria
could be ranked as the first priority for future data augmentation to ensure more accurate
measurements due to their high weight in the analysis.

Based on the discussed results, a suitability map of the study area from the perspec-
tive of three different techniques was developed using various criteria related to each
technique for both approaches 1 and 2, and for both models, with and without sensitivity
analyses. Results indicate that the ponds and pans technique is the most suitable option
for MPB, covering more areas with a high potential of RWH than the two other techniques
for both approaches (21% of the study area on average). After that, terracing and per-
colation tank cover 11.6% and 10.5% of the study area with high potential for RWH on
average, respectively.

It should be noted that the modeling cost, data availability and accuracy, and efficiency
of these methods can vary significantly from basin to basin. In more developed countries,
data can be obtained with minimal effort and have a high accuracy. On the other hand, the
cost of developing a hydrologic model may defeat the purpose of integrating the hydrologic
model with the MCDA-GIS approach. The abovementioned cost-benefit analysis is clearly
beyond the scope of this project. It is recommended that the above approach be considered
in other case studies where the flow of data is readily available and the SWAT model
parameters can be calibrated. Therefore, the findings of this research can be compared
against those of other areas and the reliability of these results can be further investigated.

Moreover, applying hydrologic models as comprehensive as SWAT are usually de-
manding in terms of data, time, and effort and their advantages need to justify their
application. Meanwhile, since in this study generated maps from two approaches that
were highly correlated which may not justify its application. This may be because of the
fact that we intended to evaluate the efficiency of the model for areas suffering from data
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scarcity and, consequently, we did not calibrate the SWAT model. Considering this, we
recommend applying this approach for areas with sufficient in situ data in order to calibrate
the SWAT model and to assess the results from two approaches to check the justification for
using a hydrologic model. It is possible that other hydrologic models result in a different
conclusion than those drawn in this research and justify the use of hydrologic models for
RWH. It is recommended that a group of different hydrologic models be considered to
compare two approaches and further evaluate the use of hydrologic modeling in RWH.
Moreover, the comparison between the two approaches might be impacted by the utilized
MCDA method. It is recommended that a similar analysis be considered using other
MCDA methods, such as ANP, and assess possible impacts. In the end, the identified
high-potential RWH areas are based on the initial assessment of this study area. More
specific and comprehensive studies are required to consider impacts of other hydrological
processes, including evapotranspiration, to estimate the actual harvestable rainwater in
these areas and fine-tune the water resources management of MPB.

Results of this research can potentially be helpful for further studies for populated
areas in a developing country, such as Iran. While there are many technical issues for
implementing RWH techniques in a populated area, such as MPB, it is an inevitable need
to help satisfy the ever-increasing demand for domestic water. Consequently, it is well
within expectations that this approach, or any other comparable one, be considered for
application in the near future.
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